Purposes, Concepts, Misfits
and a Redesign of Git

Santiago Perez De Rosso, MIT CSAIL

SPLASH 2016
11/02/2016

0 glt --distributed-even-if-your-workflow-isnt

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

9 Learn Git in your browser for free with Try Git.

2 About Documentation

Q The advantages of Git compared m Command reference pages, Pro
to other source control systems. Git book content, videos and
other material.
Downloads Community
‘ GUI clients and binary releases CS} Get involved! Bug reporting,
for all major platforms. mailing list, chat, development
and more.
Git Pro Git by Scott Chacon and Ben Straub is available to read online for free. Dead

tree versions are available on Amazon.com.

Latest source Release

2.6.2

Release Notes (2015-10-16)

Downloads for Mac

N —~—
@ MacGUIs WM Tarballs

.... Windows Build u Source Code

casy to learn

A Case of Computational Thinking: The Subtle Effect of
Hidden Dependencies on the User Experience of Version
Control

Luke Church!, Emma Séderberg?, and Elayabharath Elango3

! University of Cambridge, Computer Laboratory, luke@church .name
2 Google Inc., emso@google.com
3 Autodesk, Elayabharath.ElangoQautodesk.com

Abstract. We present some work in progress based on observations of the use of version con-
trol systems in two different software development organizations. We consider the emergent user
experience, and analyze the structure of the conceptual model and its presentation to see how
this experience is formed. We consider its impact on the adoption of such tools outside software
engineering and suggest future lines of research.

Appears in Psychology of Programming Interest Group 14 - 25th Annual Workshop

— Risk aversion, little adoption of new features: Three users provided examples of risk
aversion in their workflow. One user had included a command in their workflow to prevent
a past problem from reoccurring, with the sole purpose of preventing a problem which may
not be current. Two users avoided using alternative commands that would better suit the
task they were trying to perform, due to uncertainty of the consequences of running a new
command.

Repair operations are expensive: Throughout the project there were a number of inci-
dents where productivity was reduced due to issues with Git. The cost of addressing these
problems was often considerable, ranging from several engineering-hours for local corruption
issues to a full engineering day to remove some unwanted information from the repository.
Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

— Risk aversion, little adoption of new features: Three users provided examples of risk
aversion in their workflow. One user had included a command in their workflow to prevent
a past problem from reoccurring, with the sole purpose of preventing a problem which may

not be current. Two users avoided using alternative commands that would better suit the
task they were trying to perform, due to uncertainty of the consequences of running a new
command.

not be current. Two users avoided using alternative commands that would better suit the

task they were trying to perform, due to uncertainty of the consequences of running a new
command.

NAME

git-rebase - Forward-port local commits to the updated upstream head

2 ¥, T ~ A
SYNOPSIS
git rebase [-1 | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]
git rebase [-1 -—-interactive] [options] [--exec <cmd>] [--onto <newbase>]

--root [<branch>]

git rebase --continue --skip -—abort --edit-todo
DESCRIPTION
If <branch> is specified, git rebase will perform an automatic git checkout <branch> before doing

anything else. Otherwise it remains on the current branch.

If <upstream> is not specified, the upstream configured in branch.<name>.remote and branch.
<name>.merge options will be used (see git-config[1] for details) and the --fork-point option is
assumed. If you are currently not on any branch or if the current branch does not have a configured

upstream, the rebase will abort.

All changes made by commits in the current branch but that are not in <upstream> are saved to a
temporary area. This is the same set of commits that would be shown by git log
<upstream>..HEAD ;orby git log 'fork point'..HEAD ,if --fork-point is active (see the

description on --fork-point below); orby git log HEAD ,ifthe --root option is specified.

The current branch is reset to <upstream>, or <newbase> if the --onto option was supplied. This has the
exact same effectas git reset --hard <upstream> (or <newbase>). ORIG_HEAD is set to point
at the tip of the branch before the reset.

The commits that were previously saved into the temporary area are then reapplied to the current branch,
one by one, in order. Note that any commits in HEAD which introduce the same textual changes as a
commit in HEAD..<upstream> are omitted (i.e., a patch already accepted upstream with a different
commit message or timestamp will be skipped).

It is possible that a merge failure will prevent this process from being completely automatic. You will have
to resolve any such merge failure and run git rebase --continue .Another option is to bypass the
commit that caused the merge failure with git rebase --skip .To check out the original <branch>

and remove the .git/rebase-apply working files, use the command git rebase --abort instead.

Assume the following history exists and the current branch is "topic":

NAME

git-rebase - Forward-port local commits to the updated upstream head

SYNOPSIS

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git rebase [-1 | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
—--root [<branch>]

git rebase --continue | --skip | --abort | --edit-todo

git-wave-stash(1) Manual Page Permalink

NAME

git-wave-stash — wave all staged stashes next to various cherry-picked non-applied applied trees

SYNOPSIS

git-wave-stash --predict-whistle-tree --dodge-pack

DESCRIPTION

git-wave-stash waves a few non-parsed staged stashes to any noted remotes, and you could annotate a few
subtrees or run git-skim-ref --sustain-grope-log instead

git-drink-branch takes options relevant to the git-blend-tip executable to check what is prevented and
how. git-pounce-tree takes options applicable to the git-promote-tree command to verify what is fscked
and how.

When git-learn-origin stashes a tag, START HISTORY is diffed to grep the stage of a few commits over the
file, and after fscking bases to many histories, you can archive the history of the packs. Whenever git-nail-
history cleans a remote, the pulled tags staged by objects in the path, but that are in <oldobject>, are fetched in a
staged ref, but the same set of subtrees would be remoted in a temporary archive. If git-drag-submodule
quiltimports an origin, <swipe-archive> is logged to rebase the remote of the stashes inside the subtree, as various
sent refs that were earlier rebased over the staged histories are bundled to an automatic pack. Any pushing of an
object that resets a tip immediately after can be pushed with git-vault-tag, and all committed remotes that were
formerly quiltimported to the passive tips are merged to a staged stage.

If STRIP UPSTREAM is not bundled, any describing of a tip that shows a submodule a while after can be cherry-
picked with git-kick-tag, but some imported bases are reset to BUSHWHACK OLD SUBTREE by git-flick-
tree. To reset a passive <remove-upstream> or configure the working remotes, use the command git-untangle-

change --illustrate-tip.

OPTIONS

--predict-whistle-tree
the subtree should not be flashed by a requested pack

--dodge-pack
fast-import the histories of a few files that are parsed

SEE ALSO

git-gouge-head(1l), git-strip-history(l), git-recommend-pack(l), git-tilt-branch(1l)

git-wave-stash(1) Manual Page Permalink

NAME

git-wave-stash — wave all staged stashes next to various cherry-picked non-applied applied trees

SYNOPSIS

git-wave-stash --predict-whistle-tree --dodge-pack

git-distinguish-tree(1) Manual Page Permalink

NAME

git-distinguish-tree — distinguish a few non-cleaned remote trees inside various rev-listed upstreams

SYNOPSIS

git-distinguish-tree [--distinguish-grope-history | --relieve-ref | --delineate-log]

DESCRIPTION

git-distinguish-tree distinguishes some applied trees over any forward-ported objects, and various prevented
bases checked out by paths in the log, but that sometimes are not in STRESS SUBMODULE, are named in a
temporary file.

The relinked packs that were previously fscked to the staged areas are pulled to an automatic tip. Some remoted
archives are counted to <rate-history>by git-quicken-head, and it is a certain possibility that a reset failure
should prevent automatic failing of all shown logs.

If <drain-index>is not configured, the indexed upstreams are archived to <oldlog> by git-brace-file, but the —-
certify-tilt-base option can be used to note a submodule for the stage that is cherry-picked by a passive
stage. Any cleaning of a commit that clones a log soon after can be pushed with git-pounce-subtree. The user
must initialize all logs and run git-realize-remote —--suck-origin instead, so the user should commit all
bases and run git-command-upstream --hang-1log instead.

OPTIONS

--distinguish-grope-history
import the bases of a few files that are archived

--relieve-ref
use ref to checkout origins/stages/ to an exported ref

--delineate-log
save the histories of a few stages that are failed

SEE ALSO

git-engineer-submodule(1l), git-lecture-archive(l)

git-distinguish-tree(1) Manual Page Permalink

NAME

git-distinguish-tree — distinguish a few non-cleaned remote trees inside various rev-listed upstreams

SYNOPSIS

git-distinguish-tree [--distinguish-grope-history | --relieve-ref | --delineate-log]

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area --collide-index-origin]

DESCRIPTION

git-control-stash controls some non-configured upstream stashes next to various archived unstaged archives,
and various set tips are packed to SERVICE_REMOTE UPSTREAM by git-activate-log.

git-review-branch takes options appropriate to the git-maintain-tag action to control what is counted and
how, but any noting of a stash that initializes a path soon after can be noted with git-narrow-stash. When git-
improvise-file relinks a ref, any committing of an upstream that remotes a stash a while after can be patched
with git-examine-commit, because the --transport-publicize-commit argument can be used to prune an
upstream for the tag that is staged by a temporary object. Some rev-parsed trees that were earlier grepped for the
staged bases are named to a temporary base, as any showing of a tag that archives an upstream some time after
can be annotated with git-read-remote. The user should count the bases and/or run git-individualize-
history --justify-zip-upstream instead, because the same set of packs would sometimes be added in a
staged history.

After fscking tags to many archives, you can check the upstream of the histories. git-discard-branch --gain-
enable-pack must execute a staged git-propose-change before doing anything else, so the same set of refs
would sometimes be fetched in a temporary remote. When git-abduct-history fast-exports a commit, you may
reflog any indices and/or run git-nail-log --occupy-realize-head instead.

After checking branches to many stashes, you can add the base of the objects. The same set of indices would
sometimes be reapplied in an automatic commit. In case THREAD OLD ORIGIN is staged, it is in a few cases a
chance that a grepped error should prevent temporary stripping of all imported bases. It is a small chance that a
counted failure will prevent staged rev-listing of some failed logs, as the --f1ick-stage flag can be used to filter-
branch a commit for the origin that is requested by an automatic submodule.

OPTIONS

--steer-stash
without this argument, git-scan-commit --grab-branch cherry-picks indices that fsck the specified
archives

--scout-area
the tag can not be stacked by a merged tree

--collide-index-origin
the change should not be blocked by a cloned stash

SEE ALSO

git-page-path(1l), git-pocket-stash(1l), git-race-head(1)

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area —-collide-index-origin]

NAME

git-rebase - Forward-port local commits to the updated upstream head

SYNOPSIS

git rebase [-1i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
—--root [<branch>]

git rebase --continue | --skip | --abort | --edit-todo

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area —-collide-index-origin |

— Repair operations are expensive: Throughout the project there were a number of inci-
dents where productivity was reduced due to issues with Git. The cost of addressing these
problems was often considerable, ranging from several engineering-hours for local corruption

issues to a full engineering day to remove some unwanted information from the repository.
Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

Several of the team report having to perform repeated local repairs by re-cloning their entire

repository.

THIS 15 GIT. IT TRACKS COLLABORATIVE. LJORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

(COOL. HOU DO WE.VSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC UP
IF YOU GET ERRORS, SAVE. YOUR WORK
FLSELHERE, DELETE THE. PROJECT

xked: Git
http://xkcd.com/1597/

http://xkcd.com/1597/

Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

IF YO GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

http://xkcd.com/1597/

Git User’'s Survey 2012

24. What do you hate about Git? (optional)

Total respondents

Respondents who skipped this question

“too complex for ‘requires steep
many users’ learning curve for
newbies”

“dark corners”

Git User’s Surve

17. Which of the following features would you like to see implemented in git?

better support for big files (large media)

resumable clone/fetch (and other remote operations)
GitTorrent Protocol, or git-mirror

lazy clone / on-demand fetching of object

subtree clone

support for tracking empty directories

environment variables in config

better undo/abort/continue, and for more commands

'-n' like option for each command, which describes what would happen

Git User's Survey 2011

'-n' like option for each command, which describes what would happen

3rd most voted option!

Where things go wrong

Where things go wrong

1. Switching branches
2. Detached head
3. Untracking file

Understanding branches

Commits map to

Isomorphic contours '
In source-code :
phase space
Distributed merge-commit ‘
point T
v

Individual developer's
working-copy repository
Solution space space (n-dimensional)

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

One of the things that tripped me up as a novice user was the way Git handles
branches....

...[it all makes sense if] branches are represented as n-dimensional membranes,

mapping the spatial loci of successive commits onto the projected manifold of each
cloned repository

The author of the git manuals clearly had this in mind...

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

= stackoverflow

git: Switch branch and ignore any changes without committing

&, |was working on a git branch and was ready to commit my changes, so | made a commit with a
useful commit message. | then absentmindedly made minor changes to the code that are not
117 worth keeping. | now want to change branches, but git gives me,

A 4

error: You have local changes to "X"; cannot switch branches.

| thought that | could change branches without committing. If so, how can | set this up? If not, how
do | get out of this problem? | want to ignore the minor changes without committing and just
change branches.

56

git branch checkout

share improve this question

edited Aug 14 '12 at 14:21 asked Aug 20 '09 at 7:56

. boyfarrell
2,636 » 3

| believe this only happens when they changes are staged for commit but not commited? git checkout works
just fine for changing branches if you haven't staged the files yet using git add or the like. — Jeremy Wall Aug
21 09 at 3:16

18 @ 40

Hi Jeremy, What do you mean by 'staged'? Forcing the user to commit file before changes branches doesn't
seems like a great workflow. For example, if I'm in the master repository and quickly want to check
something in a branch. | have to commit the code to the master first, even it the code is half written! Are you
saying that indeed, it should be possible to checkout a branch in this situation? - boyfarrell Aug 21 '09 at

6 Answers

active oldest votes

6 years ago

wed 98923 times

ive 1 month ago

Linked

switching branches in git -
when will i get “You have
local changes cannot
switch branches.”?

What is the use of “git
checkout -f” when “git
status” shows tracked file
changes on all branch

Checking out specific
branch from github

Git-branch switching all the
uncommited changes are
gone

Git always merges at a
branch switch

Git, losing changes from ftp
upload to live

Related

How do | remove local
(untracked) files from my
current Git branch?

| was working on a git branch and was ready to commit my changes, so | made a commit with a
useful commit message. | then absentmindedly made minor changes to the code that are not worth
keeping. | now want to change branches, but git gives me,

error: You have local changes to "X"; cannot switch branches.

| thought that | could change branches without committing. If so, how can | set this up? If not, how
do | get out of this problem? | want to ignore the minor changes without committing and just change
branches.

Switch branches under
conflict?

create a new commit with unfinished work?
will have to amend if you care about history

stash?
hard to remember and apply the correct stash

what if you are in the middle of a merge?

= stackoverflow

Fix a Git detached head?

A, |wasdoing some work in my repository and noticed a file has local changes. | didn't want them
anymore so | deleted the file, thinking | can just checkout a fresh copy. | wanted to do the git
334 equivalent of

v svn up .

Using git pull didn't seem to work. Some random searching led me to a site where someone
08 recommended doing

git checkout HEAD” src/

(src is the directory containing the deleted file).

Now | find out | have a detached head. | have no idea what that is. How can | undo?
git

share improve this question edited May 30 '14 at 5:02 asked Apr 19 '12 at 13:07

Cupcake Daniel
49.1k » 16 » 113 @ 136 2,732 »5 ¢ 19 ¢ 28

5 git checkout master will get you back on the master branch. If you wanted to clear out any working
copy changes, you probably wanted to do git reset --hard .- Abe Voelker Apr 19 "12 at 13:13

1 See also Why did my Git repo enter a detached HEAD state?. - Cupcake May 30 '14 at 5:14

if you haven't committed you could've done git checkout -- src/ -thesummersign May 7 at 14:28

9 Answers active oldest votes

H Git detached head issue

asked 3 years ago

viewed 256206 times

active 3 months ago

132 People Chatting

PHP
Mike M.

LavridE .

NN, ><9A

JavaStick: win everytime.
cr

Linked

Why did my Git repo enter
a detached HEAD state?

E What to do with commit
made in a detached head

m What happens to git
commits created in a
detached HEAD state?

H “git checkout <commit id>"
is changing branch to “no
branch”

Using git pull didn't seem to work. Some random searching led me to a site where someone
recommended doing

git checkout HEAD” src/

(src is the directory containing the deleted file).

Now | find out | have a detached head. | have no idea what that is. How can | undo?

rce fi’lés are no

Hitler Reacts to Git
https://youtu.be/UIINDRXR1vM

https://youtu.be/UllNDRXR1vM

<0

o0<o <o

Little Linus is sitting at home,
scratching his head

Hitler Reacts to Git
https://youtu.be/UIINDRXR1vM

https://youtu.be/UllNDRXR1vM

stack overflow

Stop tracking and ignore changes to a file in Git

| have cloned a project that includes some .csproj files. | don't need/like my local csproj files
being tracked by Git (or being brought up when creating a patch), but clearly they are needed in
812 the project.

| have added *.csproj to my LOCAL .gitignore , but the files are already in the repo.

When | type git status, it shows my changes to csproj which | am not interested in keeping track
280 of or submitting for patches.

How do | remove the "tracking of" these files from my personal repo (but keep them in the source
so | can use them) so that | don't see the changes when | do a status (or create a patch)?

Is there a correct/canonical way to handle this situation?
git gitignore git-rm
prove this question edited Jun 24 at 6:13 asked Jun 1 '09 at 19:08

OB Nick Volynkin o @ JoshuaBall

] 2,625 o 1 | © 29 ﬂ&, 3014 19

6 years ago
279154 times

today

Linked

remove a file from GIT
control

Remove file in specified
path from git tracking

How to exclude file to
push?

GIT Ignore already
commited files using
exclude for local changes

n Git ignore commited files

| have added *.csproj to my LOCAL .gitignore , but the files are already in the repo.

When | type git status, it shows my changes to csproj which | am not interested in keeping track

of or submitting for patches.

How do | remove the "tracking of" these files from my personal repo (but keep them in the source
so | can use them) so that | don't see the changes when | do a status (or create a patch)?

stack overflow

Can | get a list of files marked --assume-unchanged?

152

63

What have | marked as --assume-unchanged ? Is there any way to find out what |'ve tucked away
using that option?

I've dug through the .git/ directory and don't see anything that looks like what I'd expect, but it

must be somewhere. |'ve forgotten what | marked this way a few weeks ago and now | need to
document those details for future developers.

git
edited May 16 '12 at 2:35 asked Mar 2 '10 at 13:00
EEE?‘J blahdiblah mi Rob Wilkerson
A% 19.3k © 12 ¢ 59 @ 110 Y 20 © 92

S years ago
16784 times

1 month ago

Love this site?
Get the weekly newsletter!

» Top questions and answers
e Important announcements

» Unanswered questions

What have | marked as --assume-unchanged ? Is there any way to find out what I've tucked away

using that option?

stack overflow

undo git update-index --assume-unchanged <file>

The way you git ignore watching/tracking a particular dir/file. you just run this:

118 git update-index --assume-unchanged <file>

Now how do you undo it so they are watched again? (lets call it un-assume)

git version-control git-index

47
edited Sep 9 at 21:55 asked Jun 19 '13 at 15:57

@"El adardesngn

Just a note to say that it appears that skip-worktree is in all likelihood what you would be better to be using
than assume-unchanged, unless performance of git is your problem.
stackoverflow.com/questions/13630849/... - GreenAsJade 4

2 years ago
25296 times

1 month ago

Linked

Git - Difference Between
‘assume-unchanged' and
'skip-worktree'

n How to commit all file
except one in GitHub for
Windows

o qit pull ignore one file on
local directory

Now how do you undo it so they are watched again? (lets call it un-assume)

Undo Is easy

l David & &2 Robinson Lx
.?ﬂ

Me: Git makes it easy to revert your |local
changes

Them: Great! So what command do | use?

Me: | said it was easy not that | knew how

329 593

't not, use google

Matt Might £ 8 Follow

They told me offline use was a big advantage of
git over svn. But, how are you supposed to use

git without google”

Real problems

StackOvertlow Analysis

» find all questions with 30+ upvotes tagged with “git”
» determine it question is related to one of the misfits
(related = evidence that OP is experiencing misfit)

Question Views

Using Git and Dropbox together effectively? 215523
Backup a Local Git Repository 78674
Fully backup a git repo? 37502
Saving Changes Is it possible to push a git stash to a remote repository? 30820
Git fatal: Reference has invalid format: refs/heads/master 25717
Is “git push —mirror” sufficient for backing up my repository? 18415
How to back up private branches in git 10580

The following untracked working tree files would be overwritten by checkout 378331
git: Switch branch and ignore any changes without committing 129120
Why git keeps showing my changes when I switch branches (modified, added, deleted files) no matter if I run git add or not? 10524

Git: How can I reconcile detached HEAD with master/origin? 397694
Fix a Git detached head? 397985
Checkout GIT tag 98328
Detached Head git push says everything up-to-date even though I have local changes 79203
Why did my Git repo enter a detached HEAD state? 78856
Why did git set us on (no branch)? 41866
gitx How do I get my ’Detached HEAD’ commits back into master 42794

Switching
Branches

Handling file renames in git 242864
Is it possible to move/rename files in git and maintain their history? 153701
Why might git log not show history for a moved file, and what can I do about it? 17099
How to REALLY show logs of renamed files with git? 12923

File Rename

Why does git commit not save my changes? 142189
Git commit all files using single command 141815

File Tracking

Ignore files that have already been committed to a Git repository 387112
Stop tracking and ignore changes to a file in Git 353136
Making git “forget” about a file that was tracked but is now in .gitignore 286435
git ignore files only locally 120700
Untrack files from git 140663
Git: How to remove file from index without deleting files from any repository 61498
Ignore modified (but not committed) files in git? 38293
Untracking File Ignoring an already checked-in directory’s contents? 49692
Apply git .gitignore rules to an existing repository [duplicate] 28286
undo git update-index —assume-unchanged <file> 37262
using gitignore to ignore (but not delete) files 23381
How do you make Git ignore files without using .gitignore? 23709
Can I get a list of files marked —assume-unchanged? 20184
Keep file in a Git repo, but don’t track changes 15572
Committing Machine Specific Configuration Files 5934

How can I add an empty directory to a Git repository? 432218
Empty Directory What are the differences between .gitignore and .gitkeep? 121484
How to .gitignore all files/folder in a folder, but not the folder itself? [duplicate] 80119

Switching Branches: 3Q, +550 upvotes,+500k views

Detached Head: 7Q, +1.9k upvotes,+1.1m views

Untracking File: 15Q), +5.8k upvotes,+1.5m views

A tforay into conceptual
design

Material adapted from Daniel Jackson’s essay
“Towards a Theory of Conceptual Design for
Software” (Onward! 2015)

Concept: something you need to understand to
use an application (and also something a
developer needs to understand to work effectively
with its code)

, User Class
Tweet Scrollbar

o Class Opcode
e Module Call Stack

A concept Is Invented to solve a motivating

purpose

Serve as allow deletions

staging area to be undone
for trash

-~ Trash
>

‘\§\\\‘i."0.i 2

N III’{'
Ve 20 lllﬁ

An operational principle |

concept fulfills its motivati

£ All My Files

" iCloud Drive
| » 08-26-2

» 09-24-2
10.1007

= 2099 Ag
» 2099 ap
» 2099 Ci
» 2099 CI
» 2099 Re
» 2099 Re
15619_1
b38c35I

~» Benjam
= Benjam
= Boston,
‘| Change :

@ ArD Open
@ AirDrop Open With > A

4~ Applications
Put Back
[=] Desktop

Empty Trash

Get Info
Quick Look “08-26-2015.pdf”

Copy “08-26-2015.pdf”
Show View Options

Tags...

‘| Change
‘| Change
b chi2016

Open URL in BibDesk Web Group
Reveal in Finder

ustrates how the

Name ~ Date Modified i i
B 07-24-2015.pdf Sep 28, 2015, 10:21 AM 817 KB PDF Document

Ng purpose

“when a file or folder
IS deleted, it IS not
removed
permanently, but
saved In a special
trash folder, from
which it can be
restored until the
trash is emptied”

An operational misfitis a scenario where the
concept tails to fultill purpose

“If the user deletes a
rEAHMy Files Name ~ Date Modified o s - file by miStake’ and

2\ iCloud Drive B 07-24-2015.pdf Sep 28, 2015, 10:21 AM 817 KB PDF Document

~ 08-26-2015.pdf

f AirDrop ~ 09-24-2015.pdf AM C a n n Ot re m e m b e r

/: Applications 10.1007%2F...5089-3_31.txt
= Desktop = 2099 Approval Letter (1).pdf

= o S ’ the file's name, there

f&] Documents » 2099 CF.pdf .
r » 2099 Recruitment (1) (1).pdf : M . | S W 't

M

D load

W ownloads » 2099 Recruitment (1).pdf | “ ’ ea S a <)

I Movies 15619 _Fal15_...4 26 15.docx

7 Vi find the file, so it ma
= Benjamin Re...estigation.pdf 4 PI 1 y y

i2l Pictures = Benjamin Re...Proposal.pdf

= Boston_Publi...y_exterior.jpg M '
not be possible to
‘| Change Form (2).doc : 1 Al :

‘| Change Form.doc

I chi2016-late...eedings.tar.gz | ' : re Sto re it”

Criteria for concept design

Purpose 1 Purpose 2

Concept 1

iIncoherent concept

Purpose 1

Concept 1 Concept 1

divided concept

Concept 1

unmotivated concept

Purpose 1 Purpose 2

coupled concept

Applying the theory to Git

Data
Management

Make a set of

changes
persistent

Change
Management

Group
logically
related
changes

Record
coherent
points

Parallel Disconnected
Collaboration Development Development

Synchronize Support Do work in

changes of parallel disconnected
collaborators development mode

Data Change

Parallel

Management Management Development

Group
logically
related
changes

Make a set of
changes
persistent

Select and
review
changes that
will go in the
next commit

CRUD files

Working

Bllretion Staging Area

Support
parallel
development

Branch

Parallel
Development

Support
parallel
development

Clean up and
save
uncommitted
changes

Branch

Data
Management

Make a set of

changes
persistent

Name the
commit you
are currently
basing your

work on

Parallel
Development

Support

parallel
development

Branch

Change
Management

Group
logically

related
changes

Prevent
committing
file

Assumed
Unchanged

lgnored

Gitless

Gitless

e VVCS build on top of Git (Git compatible)

* Presents different concept model to the user

The Gitless experiment

Transform imolement
Analyze Git » concept » P » Evaluate
& release
model

N

Data
Management

Make a set of
changes
persistent

CRUD files

Working
Directory

Parallel
Development

Support
parallel
development

Branch

Change
Management

Group
logically
related
changes

Select and
review
changes that
will go in the
next commit

Stagidl Area

Parallel
Development

Support
parallel
development

Branch

Parallel
Development

Support

parallel
development

Cleégn up ghd
NE
uncgMmNyitted
Changey

Branch

Data
Management

Make a set of
changes
persistent

Name the
commit you
are currently
basing your

work on

Parallel
Development

Support
parallel
development

Branch

Change
Management

Group
logically

related
changes

Prevent
committing
file

AsSufied
Ungfianged

lgnored

User stuady

@ Terminal Shell Edit View Window Help

. [] fit-cli — bash — 150x75
——contains <commit> print only branches that contain the commit
——abbrev [=<n>] use <n> digits to display SHA-1s
Specific git-branch actions:
-a, —all list both remote-tracking and local branches
-d, —delete delete fully merged branch
-D delete branch (even if not merged)
-m, ——-move move/rename a branch and its reflog
move/rename a branch, even if target exists
—list list branch names

-1, ——create-reflog create the branch's reflog
—edit-description edit the description for the branch

-f, —force force creation, move/rename, deletion
——no-merged <commit> print only not merged branches
——merged <commit> print only merged branches

——column [=<style>] list branches in columns

30-86-204:Documents ut$ git branch feat/meters master

fatal: Not a git repository (or any of the parent directories): .git
30-86-204:Documents ut$ cd fit-cli/

30-86-204: fit-cli ut$ git branch feat/meters master

30-86-204: fit-cli ut$ git status

On branch feat/kilos

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout —— <file>..." to discard changes in working directory)
modified: fit.py

no changes added to commit (use "git add" and/or "git commit -a")
30-86-204: fit-cli ut$ git stash
Saved working directory and index state WIP on feat/kilos: @e4642b kilos feature
HEAD is now at @e4642b kilos feature
30-86-204: fit-cli ut$ git checkout feat/meters
Switched to branch 'feat/meters
30-86-204: fit-cli ut$ vi fit.py
30-86-204: fit-cli ut$ git diff
diff --git a/fit.py b/fit.py
index c28ba26..acf76e6 100755
-—- a/fit.py
+++ b/fit.py
def main():
parser.add_argument('age', type=int)
parser.add_argument('weight', type=int, help='in pounds')
parser.add_argument('height', type=int, help='in inches')
3 er.aad rg {

args = parser.parse.

args()

- result rmb(args.gender, args.age, args.weight, args.height)

args.gender, args.age, args.weight, args.he ’ € rgs.me

print('Your resting metabolic rate is {@}'.format(result))

—-def rmb(gender, age, weight, height):
+def jender, jht,)

if gender == 'female':
- return (655 + 4.35 * weight + 4.7 % height - 4.7 % age) * 1.1
4.35 % weight 4.7 * height 4.7 * age * 1.1
else:
return (66 + 6.25 * weight + 12.7 % height - 6.76 * age) * 1.1

30-86-204: fit-cli ut$ git stash

Saved working directory and index state WIP on feat/meters: cb6ead® added readme
HEAD is now at cb6ead® added readme

30-86-204: fit-cli ut$ git stash show

fit.py | 13 +++ttttdt——o

1 file changed, 10 insertions(+), 3 deletions(-)

30-86-204: fit-cli ut$

<O A Fi10:11AM ut Q

@
®

2 Tools : Fill & Sign | Comment

0
&
£y
[
®
a0
[
»
e
D)
+
l
il
E
N
i

Task 3: Let users input height in meters (3.2)

3.2. Alice just broke into your office! One of the main users of fit-cli reported a critical bug: no error is
reported to the user if she inputs a value that is not the string "female" or "male" for the gender. Since she
wants you to fix this right away, we are going to fix this bug, and then go back to working on our features.

1) Switch back to master - check
2) Openfile fit.py and make this change - check

3) Create a commit with the changes to fit.py and message "fix error checking bug" - check
4) Push the changes

Phew, the bug is now fixed. Now we are going to finish with our features.

Task completion times (minutes)

Git Gitless Git Gitless

10 12 14

8

6

4

Git Gitless Git Gitless

Task completion times (minutes)

Task completion times (minutes)

Git Gitless

Git Gitless

Post-session guestionnaire results
All Git proficiencies

" Higher is better Lower is better

" Gitless
" Git

Satisfaction ficiency Difficulty Frustration Confusion

1=strongly disagree, 4=neutral, 7=strongly agree

Post-session guestionnaire results

|
[|

" Gitless
" Git

SatisfactionEfficiency Difficulty 1 KConfusion

Post-session guestionnaire results
Git novices

" Gitless
" Git

Satisfaction Efficiency Difficulty Frustration Confusion

1=strongly disagree, 4=neutral, 7=strongly agree

Post-session guestionnaire results

Git experts

" Gitless
" Git

Satisfaction Efficiency Difficulty Frustration Confusion

1=strongly disagree, 4=neutral, 7=strongly agree

Post-study guestionnaire results

All proticiencies
7/

Higher is better

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

Post-study guestionnaire results

Git novices
7

Higher is better
6

7
D./9

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

Post-study guestionnaire results

Git experts
7/

Higher is better

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

Some final thoughts

Version Control Systems

Iry gitless!

Gitless: a version control system

About

Gitless is an experimental version control system built on top of Git. Many people
complain that Git is hard to use. We think the problem lies deeper than the user
interface, in the concepts underlying Git. Gitless is an experiment to see what
happens if you put a simple veneer on an app that changes the underlying concepts.
Because Gitless is implemented on top of Git (could be considered what Git pros call
a "porcelain” of Git), you can always fall back on Git. And of course your coworkers
you share a repo with need never know that you're not a Git aficionado.

Check out the documentation to get started. If you are new to version control, the

documentation should be enough to get you started. If you are a Git pro looking to
see what's different from your beloved Git you'll be able to spot the differences by
glancing through the Gitless vs. Git section.

gitless.com

Download

e Mac OS X Binary (.tar.gz)
e Linux Binary (.tar.gz)

e Source Code (.tar.gz)

For installation instructions see the
readme file. After installation, you
should be able to execute the gl
command. The current Gitless version
is 0.8.2 (release notes).

http://gitless.com

