
Purposes, Concepts, Misfits
and a Redesign of Git

SPLASH 2016
11/02/2016

Santiago Perez De Rosso, MIT CSAIL

Easy to learn

Appears in Psychology of Programming Interest Group ’14 - 25th Annual Workshop

xkcd: Git
http://xkcd.com/1597/

http://xkcd.com/1597/

xkcd: Git
http://xkcd.com/1597/

http://xkcd.com/1597/

“too complex for
many users”

“requires steep
learning curve for

newbies”

“dark corners”

Git User’s Survey 2012

Git User’s Survey 2011

3rd most voted option!

Git User’s Survey 2011

There is something
interesting going on here
worth investigating…

If we could understand
what’s wrong with Git we
might be able to extract
larger lessons about
software design

Where things go wrong

Where things go wrong

1. Switching branches
2. Detached head
3. Untracking file

1. Switching branches

Understanding branches

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

Understanding branches
One of the things that tripped me up as a novice user was the way Git handles
branches….

…[it all makes sense if] branches are represented as n-dimensional membranes,
mapping the spatial loci of successive commits onto the projected manifold of each
cloned repository

The author of the git manuals clearly had this in mind…

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

Commit 0 Commit 1 Commit 2

master

develop

Commit 3

develop

Switch branches under
conflict?

create a new commit with unfinished work?
will have to amend if you care about history

stash?
hard to remember and apply the correct stash

what if you are in the middle of a merge?

2. Detached head

Commit 0 Commit 1 Commit 2

master

develop

Commit 3

develop

head

head head

head

head Commit 4

Commit 0 Commit 1 Commit 2

master

Commit 3

develop

head

Hitler Reacts to Git
https://youtu.be/UllNDRXR1vM

https://youtu.be/UllNDRXR1vM

Hitler Reacts to Git
https://youtu.be/UllNDRXR1vM

https://youtu.be/UllNDRXR1vM

3. Untracking file

Undo is easy

If not, use google

Real problems

StackOverflow Analysis

‣ find all questions with 30+ upvotes tagged with “git”
‣ determine if question is related to one of the misfits

(related = evidence that OP is experiencing misfit)

Switching Branches: 3Q, +550 upvotes,+500k views

Detached Head: 7Q, +1.9k upvotes,+1.1m views

Untracking File: 15Q, +5.8k upvotes,+1.5m views

A foray into conceptual
design

Material adapted from Daniel Jackson’s essay
“Towards a Theory of Conceptual Design for

Software” (Onward! 2015)

Concept: something you need to understand to
use an application (and also something a
developer needs to understand to work effectively
with its code)

User
Tweet

Class
Scrollbar

Class
Module

Opcode
Call Stack

A concept is invented to solve a motivating
purpose

serve as
staging area

for trash

allow deletions
to be undone

An operational principle illustrates how the
concept fulfills its motivating purpose

“when a file or folder
is deleted, it is not

removed
permanently, but

saved in a special
trash folder, from
which it can be

restored until the
trash is emptied”

An operational misfit is a scenario where the
concept fails to fulfill purpose

“if the user deletes a
file by mistake, and
cannot remember

the file’s name, there
is no easy way to

find the file, so it may
not be possible to

restore it”

Criteria for concept design

Concept 1

Purpose 1 Purpose 2

incoherent concept

Purpose 1

Concept 1 Concept 1 Concept 1

?

Concept 1

Purpose 1 Purpose 2

Concept 2

divided concept unmotivated concept coupled concept

Applying the theory to Git

Make a set of
changes
persistent

Group
logically
related

changes

Record
coherent

points

Synchronize
changes of

collaborators

Support
parallel

development

Data
Management

Change
Management Collaboration

Parallel
Development

Disconnected
Development

Do work in
disconnected

mode

1. Switching branches

Staging Area

Make a set of
changes
persistent

Group
logically
related

changes

Support
parallel

development

Data
Management

Change
Management

Parallel
Development

Select and
review

changes that
will go in the
next commit

BranchWorking
Directory

CRUD files

Problem: coupled concept
‣ working directory interferes with branching
‣ staging area interferes with branching

Misfit: switching branches
‣ want to switch to another branch
‣ uncommitted changes prevent switch/

/

Support
parallel

development

Parallel
Development

BranchStash

Clean up and
save

uncommitted
changes

Problem: unmotivated concept
‣ stashing purpose doesn’t map to VC purpose
‣ addresses misfit in branching

?

2. Detached head

Make a set of
changes
persistent

Support
parallel

development

Data
Management

Parallel
Development

Head Branch

Name the
commit you
are currently
basing your

work on

Problem: coupled concept
‣ head interferes with branching

Misfit: detached head
‣ realize that last few commits are wrong
‣ checkout old commit to start over again
‣ create new commits
‣ hard to switch from/to this line/

3. Untracking file

Problem: divided concept
‣ two concepts with same purpose

Misfit: untracking file
‣ want to ignore committed file
‣ .gitignore doesn't work
‣ need to mark file as assume unchanged

Ignored Assumed
Unchanged

Group
logically
related

changes

Change
Management

Prevent
committing

file

Gitless

Gitless

• VCS build on top of Git (Git compatible)

• Presents different concept model to the user

The Gitless experiment

Analyze Git
Transform
concept
model

EvaluateImplement
& release

1. Switching branches

Branches include working dir
‣ uncommitted changes can’t prevent switch
‣ can switch in the middle of a merge

Make a set of
changes
persistent

Support
parallel

development

Data
Management

Parallel
Development

BranchWorking
Directory

CRUD files

/

Removed staging area
‣ staged contents can’t prevent switch
‣ more flexible commit command

Staging Area

Group
logically
related

changes

Support
parallel

development

Change
Management

Parallel
Development

Select and
review

changes that
will go in the
next commit

Branch

/

Removed stash
‣ less need for stashing

Support
parallel

development

Parallel
Development

BranchStash

Clean up and
save

uncommitted
changes

?

2. Detached head

Head is a per-branch reference
‣ each branch has a head
‣ can’t go into a detached head state

Make a set of
changes
persistent

Support
parallel

development

Data
Management

Parallel
Development

Head Branch

Name the
commit you
are currently
basing your

work on

/

3. Untracking file

Ignored Assumed
Unchanged

Group
logically
related

changes

Change
Management

Prevent
committing

file

Removed assumed unchanged
‣ committed files can be ignored or untracked

User study
Experiment design
‣ within-subjects
‣ 2 sessions of ~1 hour
‣ six tasks per session (+ 1 practice task)
‣ survey after session + final survey

Subjects
‣ 11 = 3 industry + 3 research + 5 student
‣ Git: 4 novices, 3 regular, 4 experts
‣ Gitless: none used before

Tasks
‣ commit staged modified file
‣ create and switch to branch
‣ switch with changes that conflict
‣ switch leaving changes behind
‣ switch in the middle of merge
‣ undo commit

Task completion times (minutes)

Git Gitless

1
2

3
4

5
6

7
8

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
5

6
7

8
9

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
6

8
1

0
1

2

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

5
1
0

1
5

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

5
1

0
1

5
2

0

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
6

8
1

0
1

2
1

4

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Task completion times (minutes)

Git Gitless

1
2

3
4

5
6

7
8

Git Gitless

4
5

6
7

8
9

Git Gitless

4
6

8
1

0
1

2
Git Gitless

5
1
0

1
5

Git Gitless

5
1

0
1

5
2

0

Git Gitless

4
6

8
1

0
1

2
1

4

Task completion times (minutes)

Git Gitless

1
2

3
4

5
6

7
8

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
5

6
7

8
9

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
6

8
1

0
1

2

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

5
1
0

1
5

Ta
sk

 c
o
m

p
le

tio
n
 t
im

e
 (

m
in

u
te

s)

Git Gitless

5
1

0
1

5
2

0

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

Git Gitless

4
6

8
1

0
1

2
1

4

Ta
sk

 c
o

m
p

le
tio

n
 t

im
e

 (
m

in
u

te
s)

7 out of
11

8 out of
11

10 out of
11

Post-session questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

All Git proficiencies

Lower is betterHigher is better

Post-session questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

All Git proficiencies

Lower is betterHigher is better

Post-session questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

Git novices

Lower is betterHigher is better

Post-session questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

Git experts

Lower is betterHigher is better

Post-study questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

Higher is better

All proficiencies

Post-study questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

Git novices

Higher is better

Post-study questionnaire results

1=strongly disagree, 4=neutral, 7=strongly agree

Git experts

Higher is better

Some final thoughts

Git

Version Control Systems

Software Design & Development tools

Try gitless!
gitless.com

http://gitless.com

