Whats Wrong W|th Git”?

0 glt --distributed-even-if-your-workflow-isnt

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

9 Learn Git in your browser for free with Try Git.

2 About Documentation

Q The advantages of Git compared m Command reference pages, Pro
to other source control systems. Git book content, videos and
other material.
Downloads Community
‘ GUI clients and binary releases CS} Get involved! Bug reporting,
for all major platforms. mailing list, chat, development
and more.
Git Pro Git by Scott Chacon and Ben Straub is available to read online for free. Dead

tree versions are available on Amazon.com.

Latest source Release

2.6.2

Release Notes (2015-10-16)

Downloads for Mac

N —~—
@ MacGUIs WM Tarballs

.... Windows Build u Source Code

casy to learn

A Case of Computational Thinking: The Subtle Effect of
Hidden Dependencies on the User Experience of Version
Control

Luke Church!, Emma Séderberg?, and Elayabharath Elango3

! University of Cambridge, Computer Laboratory, luke@church .name
2 Google Inc., emso@google.com
3 Autodesk, Elayabharath.ElangoQautodesk.com

Abstract. We present some work in progress based on observations of the use of version con-
trol systems in two different software development organizations. We consider the emergent user
experience, and analyze the structure of the conceptual model and its presentation to see how
this experience is formed. We consider its impact on the adoption of such tools outside software
engineering and suggest future lines of research.

Appears in Psychology of Programming Interest Group 14 - 25th Annual Workshop

— Low user confidence: A number of the team report minimal confidence in Git. Several of
the team reported manually copying of their local working set to a separate backup directory
before performing operations via Git. Even one of the more experienced Git users requested
that someone else perform an operation because “it scares the [elided] out of me”

— Repair operations are expensive: Throughout the project there were a number of inci-
dents where productivity was reduced due to issues with Git. The cost of addressing these
problems was often considerable, ranging from several engineering-hours for local corruption
issues to a full engineering day to remove some unwanted information from the repository.
Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

— Low user confidence: A number of the team report minimal confidence in Git. Several of
the team reported manually copying of their local working set to a separate backup directory

before performing operations via Git. Even one of the more experienced Git users requested
that someone else perform an operation because “it scares the |elided| out of me”

before performing operations via Git. Even one of the more experienced Git users requested

that someone else perform an operation because “it scares the [elided] out of me”

NAME

git-rebase - Forward-port local commits to the updated upstream head

2 ¥, T ~ A
SYNOPSIS
git rebase [-1 | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]
git rebase [-1 -—-interactive] [options] [--exec <cmd>] [--onto <newbase>]

--root [<branch>]

git rebase --continue --skip -—abort --edit-todo
DESCRIPTION
If <branch> is specified, git rebase will perform an automatic git checkout <branch> before doing

anything else. Otherwise it remains on the current branch.

If <upstream> is not specified, the upstream configured in branch.<name>.remote and branch.
<name>.merge options will be used (see git-config[1] for details) and the --fork-point option is
assumed. If you are currently not on any branch or if the current branch does not have a configured

upstream, the rebase will abort.

All changes made by commits in the current branch but that are not in <upstream> are saved to a
temporary area. This is the same set of commits that would be shown by git log
<upstream>..HEAD ;orby git log 'fork point'..HEAD ,if --fork-point is active (see the

description on --fork-point below); orby git log HEAD ,ifthe --root option is specified.

The current branch is reset to <upstream>, or <newbase> if the --onto option was supplied. This has the
exact same effectas git reset --hard <upstream> (or <newbase>). ORIG_HEAD is set to point
at the tip of the branch before the reset.

The commits that were previously saved into the temporary area are then reapplied to the current branch,
one by one, in order. Note that any commits in HEAD which introduce the same textual changes as a
commit in HEAD..<upstream> are omitted (i.e., a patch already accepted upstream with a different
commit message or timestamp will be skipped).

It is possible that a merge failure will prevent this process from being completely automatic. You will have
to resolve any such merge failure and run git rebase --continue .Another option is to bypass the
commit that caused the merge failure with git rebase --skip .To check out the original <branch>

and remove the .git/rebase-apply working files, use the command git rebase --abort instead.

Assume the following history exists and the current branch is "topic":

NAME

git-rebase - Forward-port local commits to the updated upstream head

SYNOPSIS

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git rebase [-1 | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
—--root [<branch>]

git rebase --continue | --skip | --abort | --edit-todo

git-wave-stash(1) Manual Page Permalink

NAME

git-wave-stash — wave all staged stashes next to various cherry-picked non-applied applied trees

SYNOPSIS

git-wave-stash --predict-whistle-tree --dodge-pack

DESCRIPTION

git-wave-stash waves a few non-parsed staged stashes to any noted remotes, and you could annotate a few
subtrees or run git-skim-ref --sustain-grope-log instead

git-drink-branch takes options relevant to the git-blend-tip executable to check what is prevented and
how. git-pounce-tree takes options applicable to the git-promote-tree command to verify what is fscked
and how.

When git-learn-origin stashes a tag, START HISTORY is diffed to grep the stage of a few commits over the
file, and after fscking bases to many histories, you can archive the history of the packs. Whenever git-nail-
history cleans a remote, the pulled tags staged by objects in the path, but that are in <oldobject>, are fetched in a
staged ref, but the same set of subtrees would be remoted in a temporary archive. If git-drag-submodule
quiltimports an origin, <swipe-archive> is logged to rebase the remote of the stashes inside the subtree, as various
sent refs that were earlier rebased over the staged histories are bundled to an automatic pack. Any pushing of an
object that resets a tip immediately after can be pushed with git-vault-tag, and all committed remotes that were
formerly quiltimported to the passive tips are merged to a staged stage.

If STRIP UPSTREAM is not bundled, any describing of a tip that shows a submodule a while after can be cherry-
picked with git-kick-tag, but some imported bases are reset to BUSHWHACK OLD SUBTREE by git-flick-
tree. To reset a passive <remove-upstream> or configure the working remotes, use the command git-untangle-

change --illustrate-tip.

OPTIONS

--predict-whistle-tree
the subtree should not be flashed by a requested pack

--dodge-pack
fast-import the histories of a few files that are parsed

SEE ALSO

git-gouge-head(1l), git-strip-history(l), git-recommend-pack(l), git-tilt-branch(1l)

git-wave-stash(1) Manual Page Permalink

NAME

git-wave-stash — wave all staged stashes next to various cherry-picked non-applied applied trees

SYNOPSIS

git-wave-stash --predict-whistle-tree --dodge-pack

git-distinguish-tree(1) Manual Page Permalink

NAME

git-distinguish-tree — distinguish a few non-cleaned remote trees inside various rev-listed upstreams

SYNOPSIS

git-distinguish-tree [--distinguish-grope-history | --relieve-ref | --delineate-log]

DESCRIPTION

git-distinguish-tree distinguishes some applied trees over any forward-ported objects, and various prevented
bases checked out by paths in the log, but that sometimes are not in STRESS SUBMODULE, are named in a
temporary file.

The relinked packs that were previously fscked to the staged areas are pulled to an automatic tip. Some remoted
archives are counted to <rate-history>by git-quicken-head, and it is a certain possibility that a reset failure
should prevent automatic failing of all shown logs.

If <drain-index>is not configured, the indexed upstreams are archived to <oldlog> by git-brace-file, but the —-
certify-tilt-base option can be used to note a submodule for the stage that is cherry-picked by a passive
stage. Any cleaning of a commit that clones a log soon after can be pushed with git-pounce-subtree. The user
must initialize all logs and run git-realize-remote —--suck-origin instead, so the user should commit all
bases and run git-command-upstream --hang-1log instead.

OPTIONS

--distinguish-grope-history
import the bases of a few files that are archived

--relieve-ref
use ref to checkout origins/stages/ to an exported ref

--delineate-log
save the histories of a few stages that are failed

SEE ALSO

git-engineer-submodule(1l), git-lecture-archive(l)

git-distinguish-tree(1) Manual Page Permalink

NAME

git-distinguish-tree — distinguish a few non-cleaned remote trees inside various rev-listed upstreams

SYNOPSIS

git-distinguish-tree [--distinguish-grope-history | --relieve-ref | --delineate-log]

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area --collide-index-origin]

DESCRIPTION

git-control-stash controls some non-configured upstream stashes next to various archived unstaged archives,
and various set tips are packed to SERVICE_REMOTE UPSTREAM by git-activate-log.

git-review-branch takes options appropriate to the git-maintain-tag action to control what is counted and
how, but any noting of a stash that initializes a path soon after can be noted with git-narrow-stash. When git-
improvise-file relinks a ref, any committing of an upstream that remotes a stash a while after can be patched
with git-examine-commit, because the --transport-publicize-commit argument can be used to prune an
upstream for the tag that is staged by a temporary object. Some rev-parsed trees that were earlier grepped for the
staged bases are named to a temporary base, as any showing of a tag that archives an upstream some time after
can be annotated with git-read-remote. The user should count the bases and/or run git-individualize-
history --justify-zip-upstream instead, because the same set of packs would sometimes be added in a
staged history.

After fscking tags to many archives, you can check the upstream of the histories. git-discard-branch --gain-
enable-pack must execute a staged git-propose-change before doing anything else, so the same set of refs
would sometimes be fetched in a temporary remote. When git-abduct-history fast-exports a commit, you may
reflog any indices and/or run git-nail-log --occupy-realize-head instead.

After checking branches to many stashes, you can add the base of the objects. The same set of indices would
sometimes be reapplied in an automatic commit. In case THREAD OLD ORIGIN is staged, it is in a few cases a
chance that a grepped error should prevent temporary stripping of all imported bases. It is a small chance that a
counted failure will prevent staged rev-listing of some failed logs, as the --f1ick-stage flag can be used to filter-
branch a commit for the origin that is requested by an automatic submodule.

OPTIONS

--steer-stash
without this argument, git-scan-commit --grab-branch cherry-picks indices that fsck the specified
archives

--scout-area
the tag can not be stacked by a merged tree

--collide-index-origin
the change should not be blocked by a cloned stash

SEE ALSO

git-page-path(1l), git-pocket-stash(1l), git-race-head(1)

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area —-collide-index-origin]

NAME

git-rebase - Forward-port local commits to the updated upstream head

SYNOPSIS

git rebase [-1i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
[<upstream> [<branch>]]

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>]
—--root [<branch>]

git rebase --continue | --skip | --abort | --edit-todo

git-control-stash(1) Manual Page Permalink

NAME

git-control-stash — control some non-bundled staged stashes over any shown submodules

SYNOPSIS

git-control-stash [--steer-stash | --scout-area —-collide-index-origin |

— Repair operations are expensive: Throughout the project there were a number of inci-
dents where productivity was reduced due to issues with Git. The cost of addressing these
problems was often considerable, ranging from several engineering-hours for local corruption

issues to a full engineering day to remove some unwanted information from the repository.
Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

Several of the team report having to perform repeated local repairs by re-cloning their entire

repository.

THIS 15 GIT. IT TRACKS COLLABORATIVE. LJORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

(COOL. HOU DO WE.VSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC UP
IF YOU GET ERRORS, SAVE. YOUR WORK
FLSELHERE, DELETE THE. PROJECT

xked: Git
http://xkcd.com/1597/

http://xkcd.com/1597/

Several of the team report having to perform repeated local repairs by re-cloning their entire
repository.

IF YO GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

http://xkcd.com/1597/

Git User’'s Survey 2012

24. What do you hate about Git? (optional)

Total respondents

Respondents who skipped this question

“too complex for ‘requires steep
many users’ learning curve for
newbies”

“dark corners”

Git User’s Surve

17. Which of the following features would you like to see implemented in git?

better support for big files (large media)

resumable clone/fetch (and other remote operations)
GitTorrent Protocol, or git-mirror

lazy clone / on-demand fetching of object

subtree clone

support for tracking empty directories

environment variables in config

better undo/abort/continue, and for more commands

'-n' like option for each command, which describes what would happen

Git User's Survey 2011

'-n' like option for each command, which describes what would happen

3rd most voted option!

Git User's Survey 2011

before performing operations via Git. Even one of the more experienced Git users requested
that someone else perform an operation because “it scares the |elided] out of me”

'-n' like option for each command, which describes what would happen

3rd most voted option!

Where things go wrong

Where things go wrong

1. Switching branches
2. Detached head
3. Untracking file

Understanding branches

Commits map to

Isomorphic contours '
In source-code :
phase space
Distributed merge-commit ‘
point T
v

Individual developer's
working-copy repository
Solution space space (n-dimensional)

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

One of the things that tripped me up as a novice user was the way Git handles
branches....

...[it all makes sense if] branches are represented as n-dimensional membranes,

mapping the spatial loci of successive commits onto the projected manifold of each
cloned repository

The author of the git manuals clearly had this in mind...

A Guide to Git Using Spatial Analogies
Jonathan Hartley, http://tartley.com/?p=1267

http://tartley.com/?p=1267

= stackoverflow

git: Switch branch and ignore any changes without committing

&, |was working on a git branch and was ready to commit my changes, so | made a commit with a
useful commit message. | then absentmindedly made minor changes to the code that are not
117 worth keeping. | now want to change branches, but git gives me,

A 4

error: You have local changes to "X"; cannot switch branches.

| thought that | could change branches without committing. If so, how can | set this up? If not, how
do | get out of this problem? | want to ignore the minor changes without committing and just
change branches.

56

git branch checkout

share improve this question

edited Aug 14 '12 at 14:21 asked Aug 20 '09 at 7:56

. boyfarrell
2,636 » 3

| believe this only happens when they changes are staged for commit but not commited? git checkout works
just fine for changing branches if you haven't staged the files yet using git add or the like. — Jeremy Wall Aug
21 09 at 3:16

18 @ 40

Hi Jeremy, What do you mean by 'staged'? Forcing the user to commit file before changes branches doesn't
seems like a great workflow. For example, if I'm in the master repository and quickly want to check
something in a branch. | have to commit the code to the master first, even it the code is half written! Are you
saying that indeed, it should be possible to checkout a branch in this situation? - boyfarrell Aug 21 '09 at

6 Answers

active oldest votes

6 years ago

wed 98923 times

ive 1 month ago

Linked

switching branches in git -
when will i get “You have
local changes cannot
switch branches.”?

What is the use of “git
checkout -f” when “git
status” shows tracked file
changes on all branch

Checking out specific
branch from github

Git-branch switching all the
uncommited changes are
gone

Git always merges at a
branch switch

Git, losing changes from ftp
upload to live

Related

How do | remove local
(untracked) files from my
current Git branch?

| was working on a git branch and was ready to commit my changes, so | made a commit with a
useful commit message. | then absentmindedly made minor changes to the code that are not worth
keeping. | now want to change branches, but git gives me,

error: You have local changes to "X"; cannot switch branches.

| thought that | could change branches without committing. If so, how can | set this up? If not, how
do | get out of this problem? | want to ignore the minor changes without committing and just change
branches.

Switch branches under
conflict?

create a new commit with unfinished work?
will have to amend if you care about history

stash?
hard to remember and apply the correct stash

what if you are in the middle of a merge?

= stackoverflow

Fix a Git detached head?

A, |wasdoing some work in my repository and noticed a file has local changes. | didn't want them
anymore so | deleted the file, thinking | can just checkout a fresh copy. | wanted to do the git
334 equivalent of

v svn up .

Using git pull didn't seem to work. Some random searching led me to a site where someone
08 recommended doing

git checkout HEAD” src/

(src is the directory containing the deleted file).

Now | find out | have a detached head. | have no idea what that is. How can | undo?
git

share improve this question edited May 30 '14 at 5:02 asked Apr 19 '12 at 13:07

Cupcake Daniel
49.1k » 16 » 113 @ 136 2,732 »5 ¢ 19 ¢ 28

5 git checkout master will get you back on the master branch. If you wanted to clear out any working
copy changes, you probably wanted to do git reset --hard .- Abe Voelker Apr 19 "12 at 13:13

1 See also Why did my Git repo enter a detached HEAD state?. - Cupcake May 30 '14 at 5:14

if you haven't committed you could've done git checkout -- src/ -thesummersign May 7 at 14:28

9 Answers active oldest votes

H Git detached head issue

asked 3 years ago

viewed 256206 times

active 3 months ago

132 People Chatting

PHP
Mike M.

LavridE .

NN, ><9A

JavaStick: win everytime.
cr

Linked

Why did my Git repo enter
a detached HEAD state?

E What to do with commit
made in a detached head

m What happens to git
commits created in a
detached HEAD state?

H “git checkout <commit id>"
is changing branch to “no
branch”

Using git pull didn't seem to work. Some random searching led me to a site where someone
recommended doing

git checkout HEAD” src/

(src is the directory containing the deleted file).

Now | find out | have a detached head. | have no idea what that is. How can | undo?

-

rce fi‘lés are no

Hitler Reacts to Git
https://youtu.be/UIINDRXR1vM

https://youtu.be/UllNDRXR1vM

stack overflow

Stop tracking and ignore changes to a file in Git

| have cloned a project that includes some .csproj files. | don't need/like my local csproj files
being tracked by Git (or being brought up when creating a patch), but clearly they are needed in
812 the project.

| have added *.csproj to my LOCAL .gitignore , but the files are already in the repo.

When | type git status, it shows my changes to csproj which | am not interested in keeping track
280 of or submitting for patches.

How do | remove the "tracking of" these files from my personal repo (but keep them in the source
so | can use them) so that | don't see the changes when | do a status (or create a patch)?

Is there a correct/canonical way to handle this situation?
git gitignore git-rm
prove this question edited Jun 24 at 6:13 asked Jun 1 '09 at 19:08

OB Nick Volynkin o @ JoshuaBall

] 2,625 o 1 | © 29 ﬂ&, 3014 19

6 years ago
279154 times

today

Linked

remove a file from GIT
control

Remove file in specified
path from git tracking

How to exclude file to
push?

GIT Ignore already
commited files using
exclude for local changes

n Git ignore commited files

| have added *.csproj to my LOCAL .gitignore , but the files are already in the repo.

When | type git status, it shows my changes to csproj which | am not interested in keeping track

of or submitting for patches.

How do | remove the "tracking of" these files from my personal repo (but keep them in the source
so | can use them) so that | don't see the changes when | do a status (or create a patch)?

stack overflow

Can | get a list of files marked --assume-unchanged?

152

63

What have | marked as --assume-unchanged ? Is there any way to find out what |'ve tucked away
using that option?

I've dug through the .git/ directory and don't see anything that looks like what I'd expect, but it

must be somewhere. |'ve forgotten what | marked this way a few weeks ago and now | need to
document those details for future developers.

git
edited May 16 '12 at 2:35 asked Mar 2 '10 at 13:00
EEE?‘J blahdiblah mi Rob Wilkerson
A% 19.3k © 12 ¢ 59 @ 110 Y 20 © 92

S years ago
16784 times

1 month ago

Love this site?
Get the weekly newsletter!

» Top questions and answers
e Important announcements

» Unanswered questions

What have | marked as --assume-unchanged ? Is there any way to find out what I've tucked away

using that option?

stack overflow

undo git update-index --assume-unchanged <file>

The way you git ignore watching/tracking a particular dir/file. you just run this:

118 git update-index --assume-unchanged <file>

Now how do you undo it so they are watched again? (lets call it un-assume)

git version-control git-index

47
edited Sep 9 at 21:55 asked Jun 19 '13 at 15:57

@"El adardesngn

Just a note to say that it appears that skip-worktree is in all likelihood what you would be better to be using
than assume-unchanged, unless performance of git is your problem.
stackoverflow.com/questions/13630849/... - GreenAsJade 4

2 years ago
25296 times

1 month ago

Linked

Git - Difference Between
‘assume-unchanged' and
'skip-worktree'

n How to commit all file
except one in GitHub for
Windows

o qit pull ignore one file on
local directory

Now how do you undo it so they are watched again? (lets call it un-assume)

Undo Is easy

l David & & Robinson X
ol

Me: Git makes it easy to revert your local
changes

Them: Great! So what command do | use”?

Me: | said it was easy not that | knew how

329 593

't not, use google

Matt Might 2 Follow

They told me offline use was a big advantage of
git over svn. But, how are you supposed to use

git without google”

Real problems

StackOvertlow Analysis

» find all questions with 30+ upvotes tagged with “git”
» determine it question is related to one of the misfits
(related = evidence that OP is experiencing misfit)

Question Views

Using Git and Dropbox together effectively? 215523
Backup a Local Git Repository 78674
Fully backup a git repo? 37502
Saving Changes Is it possible to push a git stash to a remote repository? 30820
Git fatal: Reference has invalid format: refs/heads/master 25717
Is “git push —mirror” sufficient for backing up my repository? 18415
How to back up private branches in git 10580

The following untracked working tree files would be overwritten by checkout 378331
git: Switch branch and ignore any changes without committing 129120
Why git keeps showing my changes when I switch branches (modified, added, deleted files) no matter if I run git add or not? 10524

Git: How can I reconcile detached HEAD with master/origin? 397694
Fix a Git detached head? 397985
Checkout GIT tag 98328
Detached Head git push says everything up-to-date even though I have local changes 79203
Why did my Git repo enter a detached HEAD state? 78856
Why did git set us on (no branch)? 41866
gitx How do I get my ’Detached HEAD’ commits back into master 42794

Switching
Branches

Handling file renames in git 242864
Is it possible to move/rename files in git and maintain their history? 153701
Why might git log not show history for a moved file, and what can I do about it? 17099
How to REALLY show logs of renamed files with git? 12923

File Rename

Why does git commit not save my changes? 142189
Git commit all files using single command 141815

File Tracking

Ignore files that have already been committed to a Git repository 387112
Stop tracking and ignore changes to a file in Git 353136
Making git “forget” about a file that was tracked but is now in .gitignore 286435
git ignore files only locally 120700
Untrack files from git 140663
Git: How to remove file from index without deleting files from any repository 61498
Ignore modified (but not committed) files in git? 38293
Untracking File Ignoring an already checked-in directory’s contents? 49692
Apply git .gitignore rules to an existing repository [duplicate] 28286
undo git update-index —assume-unchanged <file> 37262
using gitignore to ignore (but not delete) files 23381
How do you make Git ignore files without using .gitignore? 23709
Can I get a list of files marked —assume-unchanged? 20184
Keep file in a Git repo, but don’t track changes 15572
Committing Machine Specific Configuration Files 5934

How can I add an empty directory to a Git repository? 432218
Empty Directory What are the differences between .gitignore and .gitkeep? 121484
How to .gitignore all files/folder in a folder, but not the folder itself? [duplicate] 80119

Switching Branches: 3Q, +550 upvotes,+500k views

Detached Head: 7Q, +1.9k upvotes,+1.1m views

Untracking File: 15Q), +5.8k upvotes,+1.5m views

note: 1it's not the UI...

A tforay into conceptual
design

Material adapted from Daniel Jackson’s essay
“Towards a Theory of Conceptual Design for
Software” (Onward! 2015)

Concept: something you need to understand to
use an application (and also something a
developer needs to understand to work effectively
with its code)

y User Class
Tweet Scrollbar

Class Opcode
e Module Call Stack

A concept Is Invented to solve a motivating

purpose

Serve as allow deletions

staging area to be undone
for trash

-~ Trash
>

‘\§\\\‘i."0.i 2

N III’{'
Ve 20 lllﬁ

An operational misfitis a scenario where the
concept tails to fultill purpose

“If the user deletes a
o S a file by mistake, and
B Ay ries | g cannot remember

™Y iCloud Drive

% Applications : Qlivioe.ss.4—'darwin—x86_64.tar.gz t j:(5.7 : th e f I | e ,S n a m e) th e re

L] Desktop i gl-v0.8.4-linux-x86_64 tar.gz

B code € gl.htm iS qo eaSy Way tO

& Monotype_SkyFonts_Mac64_5.7.1.0.dmg
@j Documents =)
photo.3680-16 (1).ipg

© omwnissss i ansnao tos @8 find the file, so it may

12} santiago Sep 7, 2016, 9:40 PM

= Screen Shot 2016-09-10 at 5.08.41 PM : -t b . bl -t
= Screen Shot 2016-09-10 at 6.12.28 PM 2016, 6:12 PN 50 KE no e pOSSl e O

= Screen Shot 2016-09-10 at 6.12.33 PM

% Screen Shot 2016-09-10 at 6.12.39 PM Sep 10, 2016, 6:12 P\ 41 KB re StO re I't”
B _talk reduced.key Nov 1. 2016.10:19 AM

Some misfits are easy to fix...

Favorites

<2 Date Added - 0T
4 Dropbox v Date Modified

@ AirDrop bonds.png ot 22, 1 Date Created
2 fin Sep 27, 2016, 8:45 PM Date Last Opened

& Al My Files gitless-0.8.4.tar.gz i
Size

¢ iCloud Drive gl_favicon.ico | |
Version

al_files 7 6. 850 PN vers

gl-v0.8.4-darwin-x86_64.tar.gz Nov 18, 2016, 9:34 PM Comments

[=J Desktop V' gl-v0.8.4-linux-x86_64.tar.gz V18 2 24 vl A

[code ¢ gl.htm Nov 22, 2016, 8:50 PM Nov 22, 2016, ¢

Monotype_SkyFonts_Mac64_5.7.1.0.dmg o) , s

:/'A\-: Applications

Bﬁ Documents : .
photo.3680-16 (1).jpg

@ Downloads &4 photo.3680-16.jpg
2} santiago = rmv.pdf
— Screen Shot 2016-09-10 at 5.08.41 PM
Devices Screen Shot 2016-09-10 at 6.12.28 PM
» Screen Shot 2016-09-10 at 6.12.33 PM
+ Screen Shot 2016-09-10 at 6.12.39 PM Sep 26, 2016,
Screen Shot 2017-01-25 3t 4 .03.39 PM_____T0cC

Tags

Criteria for concept design

Purpose 1 Purpose 2

Concept 1

iIncoherent concept

Purpose 1

Concept 1 Concept 1

divided concept

Concept 1

unmotivated concept

Purpose 1 Purpose 2

coupled concept

Applying the theory to Git

Data
Management

Make a set of

changes
persistent

Change
Management

Group
logically
related
changes

Record
coherent
points

Parallel Disconnected
Collaboration Development Development

Synchronize Support Do work in

changes of parallel disconnected
collaborators development mode

Data Change

Parallel

Management Management Development

Group
logically
related
changes

Make a set of
changes
persistent

Select and
review
changes that
will go in the
next commit

CRUD files

Working

Bllretion Staging Area

Support
parallel
development

Branch

Stashing: motivating purpose

Stashing: motivating purpose

DESCRIPTION
Use git stash when you want to record the current state of the
working directory and the index, but want to go back to a clean

working directory. The command saves your local modifications away
and reverts the working directory to match the HEAD commit.

man git-stash

Often, when you’ve been working on part of your project, things are in a messy state and you want to
switch branches for a bit to work on something else. The problem is, you don’t want to do a commit of
half-done work just so you can get back to this point later. The answer to this issue is the git stash
command.

Stashing takes the dirty state of your working directory — that is, your modified tracked files and staged

changes — and saves it on a stack of unfinished changes that you can reapply at any time.

Pro Git (chapter 7.3), Chacon and Straub
https://qit-scm.com/book/

https://git-scm.com/book/

Stashing: motivating purpose

DESCRIPTION
Use git stash when you want to record the current state of the

working directory and the index, but want to go back to a clean

working directory. The command saves your local modifications away
and reverts the working directory to match the HEAD commit.

man git-stash

https://git-scm.com/book/

Stashing: motivating purpose

DESCRIPTION
UEERaR e Eas eV OEanERE rccord the
worklng dlrectory SNCINERENEREES |+ want

working directory. HESEmans saves your local modalIlCatlons away
and reverts the worklng directory to match the HEAD commit.

man git-stash

Stashing and Cleaning

Often, when you’ve been working on part of your project, things are in a messy state and you want to
switch branches for a bit to work on something else. The problem is, you don’t want to do a commit of
half-done work just so you can get back to this point later. The answer to this issue is the git stash
command.

Stashing takes the dirty state of your working directory — that is, your modified tracked files and staged

changes — and saves it on a stack of unfinished changes that you can reapply at any time.

Pro Git (chapter 7.3), Chacon and Straub
https://qit-scm.com/book/

https://git-scm.com/book/

Stashing: motivating purpose

Stashing and Cleaning

Often, when you’ve been working on part of your project, things are in a messy state and you want to
switch branches for a bit to work on something else. The problem is, you don’t want to do a commit of
half-done work just so you can get back to this point later. The answer to this issue is the git stash
command.

Stashing takes the dirty state of your working directory — that is, your modified tracked files and staged
changes — and saves it on a stack of unfinished changes that you can reapply at any time.

Pro Git (chapter 7.3), Chacon and Straub
https://qit-scm.com/book/

https://git-scm.com/book/

Stashing: motivating purpose

takes the dirty state of your working directory

and saves it on a stack of unfinished changes

Pro Git (chapter 7.3), Chacon and Straub
https://qit-scm.com/book/

https://git-scm.com/book/

Clean up and
save
uncommitted
changes

Data
Management

Make a set of
changes
persistent

Change
Management

Group
logically

Record
coherent

related :
points

changes

Collaboration

Clean up and
save
uncommitted
changes

Synchronize

changes of
collaborators

Parallel Disconnected
Development Development

Support Do work in
parallel disconnected
development mode

Data
Management

Make a set of

changes
persistent

Clean up and
save
uncommitted
changes

Change
Management

Collaboration

Parallel
Development

Disconnected
Development

Data Change Parallel Disconnected
Management Management Collaboration Development Development

Support

parallel
development

Clean up and
save
uncommitted
changes

Data
Management

Change
Management

Parallel
Collaboration Development

f? Disconnected
. Development

Clean up and
save

uncommitted
changes

Parallel
Development

Support
parallel
development

Clean up and
save
uncommitted
changes

Branch

Data
Management

Make a set of

changes
persistent

Name the
commit you
are currently
basing your

work on

Parallel
Development

Support

parallel
development

Branch

Change
Management

Group
logically

related
changes

Prevent
committing
file

Assumed
Unchanged

lgnored

Gitless
a simple VCS built on top of Git

Gitless

» VCS built on top of Git
» Presents different concept model to the user

» An experiment!

Data
Management

Make a set of
changes
persistent

CRUD files

Working
Directory

Parallel
Development

Support
parallel
development

Branch

Change
Management

Group
logically
related
changes

Select and
review
changes that
will go in the
next commit

Stagidl Area

Parallel
Development

Support
parallel
development

Branch

Parallel
Development

Support

parallel
development

Cleégn up ghd
NE
uncgMmNyitted
Changey

Branch

Data
Management

Make a set of
changes
persistent

Name the
commit you
are currently
basing your

work on

Parallel
Development

Support
parallel
development

Branch

Change
Management

Group
logically

related
changes

Prevent
committing
file

AsSufied
Ungfianged

lgnored

User stuady

Post-study guestionnaire results

All proticiencies
7/

Higher is better

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

Post-study guestionnaire results

Git novices
7

Higher is better
6

7
D./9

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

Post-study guestionnaire results

Git experts
7/

Higher is better

| enjoyed using Gitless easier to Gitless easier to | would use
Gitless learn than Git use than Git Gitless if | could

1=strongly disagree, 4=neutral, 7=strongly agree

User study

this doesn’t mean Gitless is a better VCS than Git
study focused on misfits and did so in a controlled environment

but it suggests that our approach can be useful
redesigning concepts could make Git easier to learn and use

Opportunity

use the theory to guide the design of new Git-compatible VCSs

Many Git clients

pp

gitbox

B & ¥ KX A h H
+ (= == »|| «pull push - | | origin/master -
Open Finder Fetch Pull Puan Merge Robase
3 | ([0 Repesitories) F] Fuby on Rails (masten T e ek A modilied flles
— documents Oleg Andreev m Classes/GBFolderMonitor
v (, Kspac e orlgin/master = 2 todo upd m Classes/GBUntrackedChan
[Working Copy v (] Clowd Agp Oleg Andreev m Classes/Libs/OAFSEventSt
. project settings fixes @ gitbox.xcodeproj/project
History dong -
N r -Les s Oleg Andreev
. €] Stashes Merge pull recuest #... trial limit of repos: 3 => 1
electro b documents
Oleg Andreev
e fix merge nd
:) Settings N 9) ey wip on branch lists
se a loop Prevent r Merge pull request... y <o German Laullom v (] Gitbox

Oleg Andreev
SuStandardVersionComparator

find-and-replace m
4N ono e
libgit2 C Mu-An CF

ﬁ_ Use localeCor

9 hours ago by Mu

Make the

Branches

m
¥ maser (ERIED e/

(8

= ol

Gownloads
Oleg Andreev

o todo upd

13R 'messages’ ins

libgit2sharp Y/ cevelopment

Test Repos.

By making a Oleg Andreev

Open Source todo upd

only add mo

mojibar

rails

¢ < ove tt sorr he APl L. Oleg Andreev
Default out of range so results w is above the SR s

C
L

Hamolts ot selection bug
Kit.net 9
: Ba aman Qleg Andreev

D = boatstrap o Ma

Messag=

V File History (GItUL/FarmBrowse.cs)
VESIA0E

etauit (alo

- ~
gitleg -3000 .5 master

Cou rt gl 22 Lianct Gl oefu e neecal Summary Auther Age

wtiging B smailswnfixed IDEA wern res

Mergz remote Eranck b cCmEeN /master’ fxed compilation errors

doc: Rework and medernisc documaentation David Aguilar 2 minutes
doc: Link tc github instzad o kernel.org for asciidoc David Aguilar 4 minutes
Merge pull requesr #1139 fram ugrar/masrar Navid Agullar 33 hours 2
Only change edge coler 0n new branch creation Uri Okrent 2 days aco
git: Support separate worktree anc .qgit files David Aguilar 2 days aco
RFADMEF: Small misc. rweaks Navid Agullar 7 days ago)
dag: Use a hyorid method for oranchy line drawing Cavid Aguilar 7 days aco|
dag: Add a TODO rote about configurability Cavid Aguilar 7 days aco| L Quick View...
dnr: Add 1.7.45 release natres . Navid Aoullar 12 davs 2q
", David Aguilar <davvid@gmail.com>
e

Ldren "save a2 hutloe tn A view in himase AAdrg

applied change: frem SmartSVN (i12142)

O [croin/master ¢ SU-3767: Widgyet is cicposed excentinn after 1 peate dizlng dispose

o i nasler|SU-3235: Filetao e display remote state r "Name” column

O SuR=positoryDrowseRemoveAct or: fixad incorrect error messzce (in case afile s selected)
O SuRepocizoryBrow:zeRenamelialog: CK button hzc periods

O SU-3850: SuRennsitoryRrowseRenameNialng: cherkTamgerName(works inverce

]

o

o

imoicwvzd hiker, addec branch liller

Gi:Cemmardz renane ‘vh

Furcion Tikerame to clipboard' 1 broase deloc 10w copies all selected filename:

view Ciff]Eldlllt: |
usiny CitJI.Ztatistics:
uginy GitJIPlugialrterfaces;
using Falchldpply:

reverse-merged ccmmi: 12e6f239ab€07032075134340C c044 31452808033 QTebl=ViewersztVisibleSelect
[erci

Cifl with HEAD...

smartgic-3 [orig r/smattgit-master]asolizd changes from SmartGit

Checkout Detached HEAD

300 ied changes from SmarGit 3 rel doc: Finalize v1.7.6 release notes

Edt €

-uginy Resowrcelanacer.Tears _ aticn; O [orlgin¢ smartsynchicrizé|Merge ramet=-tracking hranch ‘arigin/master’ intn smzrgyncarenize (1 Fowun with Pasen £
-usiay Dvssaw.Texs;) 5G-2285 Full-se een seeouil for Windows 8 Liux Mad props to Uri Ckrent for the new CAG feature! Scpash wiL ot S
« i Swap with Paran: Move Dawn) n

= Swap with Ghid (Nove U u

namespace FitUZ Signed-off-by: david Aguila- <davvid@gmail.com> Ceicte
e

e 3 Q

Short Log

Subject Author [electron - o~
added gil-dr aw L cocumentationsexte nal-lrks Furiar Kaultman Undo Redo

Auther

O Viewing 298/298 Show All

Merge pul recuest #3G0 from xox/bugfix-404-links-ta-old-github Matthews McCul'ough

Q [autodaunch-squirr First pass at auto-launch s

(o] Merge pull raquest #360 frcm xbx/bughx-104-inks-to-old-.. Matthew McCulloy,
B - F | .

£ LOCAL 373 OOh pdfrendering Get us compiling on macC

Update footer line bryan

L] Update footer links bry4n master Get us complling on Win3:

¥ Change1of 2 d90652e9.688344018e363944e8255e
Fiy 404 links o ald gthub url (girscm-nexr) Mon Feb 3174

read-disk B fix build config
Details| Ctorges Files ! update-docs Oh upgradedibee] Upgrade libcc to b4dd78d!

~ 2t RFADMF.md & REMOTE

E, README jxff --git a/README.md b/READNE.mnd L7l --gil a/README.md u/README.md -

’ o ; index ez?lz\??g.a?aﬁi 100644 1 appnviewis/shared/_footer.html.el indox c09bD63..aF20754 100644 (3 justinrobots Merge pull request #8472

& aooNiewsssnared/_foctar.nimlz <=~ 2/READNE.m ® .50 7 - . 0 origin R
+++ b/READNE nd 56,7 +59,7 @@ Tu 1un Lhe websiie fur o o Merge pull request #8467

@2 .59,7 +459,7 B8 To run

QOKKA master Merge pull request #8475

the website for testi Upgrade muitiparty for os

Con h .
Contributing h PULL REQUESTS

- fix failing download spec
Contributing .
® TAGs enable paf plugin by defat

@ SUBMODULES fix crash when pdf viewer

” slopmentuwift + hitpe/igithubcorvapplaimion - x 0 £ + 3 swift naster ¢ o & = v T
= FETCH Pi PUSH MERGE MERGE-REQ. swift v 5 swift — Supert N J3-YCUGEVEVEI-DEP.CY
= v t and function name. NF(master EJ Jason Haslam <jason@scitools.com>
. - A mmit Geperste the st of xfalts from e teet fat, sdd test for - ercy Pa |~} 736a187d39be2813ba00C44ed chBB3896L4el
e ol e oo . ' ‘ Kevin Groke Chbblee
mailcr e & | 2c8a6be
strict: Mixed m'ssing int references for constructorinit I 'st rf G U | Cl 1 G 11+’ VV b 1
o . , 9 Doug Pallard slyle in-class member inilisl zer. Ientsl |t S e Slte
. £1c0tac . " p {{g { | d {g
o) . src/parsers/clangjAction.cpp t |t SC CO dOWn Oa S ul
1744 1744 for (const CXXCtorinit.ali]
Jason Hasle . 1745 // In-class itializers arf|l
™~ /;?ﬁ:;b‘”‘"“ 1746 if (Init-sisInClassMemberIn
Q - 1737 continue;
1748
-~ O saopot AOorael\OE . xt) - . 1745 1749 if (FieldDecl «fieldDecl =
w-integer-prot Jason Haslam 11/29/16 1746 it {1fieldbecl-shasLnClas
P oot sl et saife parable-ind . . 2 2 __ 736a1a7 1747 bool inplis~it = 'init-s|

https://git-scm.com/downloads/guis

Many Git clients

(Run 'eg help --all' for a more detailed list.)

Creating repositories
eqg clone Clone a repository into a new directory
eqg init Create a new repository

Obtaining information about changes, history, & state
eq diff show changes to file contents
eqg log Show history of recorded changes
eg status Summarize current changes

Making, undoing, or recording changes
eg commit Record changes locally
eq mv Move or rename files (or directories or symlinks)
eq revert Revert local changes and/or changes from previous commits
eq stage Mark content in files as being ready for commit

Managing branches
eq branch
eq nerge
eg switch

List, create, or delete branches
n two or more development histories (branches) together
Switch the working copy to another branch

Collaboration

eg pull
e ush

Get updates from another repositeory and merge them
Push local commits to a published repository

Time saving commands
eq bisect Find the change that introduced a bug by binary search
eq stash Save and revert local changes, or apply stashed changes

Additional help:
eg help COMMAND
eq help --all
eg help topic

Get more help on COMMAND.
List more commands (not really all)
List specialized help topics.

(Detailed list of differences between eg and git)

The Interface

branches
Get a nice pretty list of available branches.

sync [<branch>]
Synchronizes the given branch. Defaults to current branch. Stash, Fetch, Auto-Merge/Rebase, Push, and

Unstash. You can only sync published branch: 1 sy)

resync <upstream-branch>
Stashes unstaged changes, Fetches, Auto-Merge/Rebase upstream data from specified upstream branch,
Performs smart pull+merge for current branch, Pushes local commits up, and Unstashes changes. Default

upstream branch is ‘'master”. (alias: rs)

switch <branch>
Switches to specified branch. Defaults to current branch. Automatically stashes and unstashes any changes
(alias: sw)

sprout [<branch>] <new-branch>

Creates a new branch off of the specified branch. Swiches to it immediately. (alias

harvest [<branch>] <into-branch>
Auto-Merge/Rebase of specified branch changes into the second branch. (alias: ha, hv,

graft <branch> <into-branch>
Auto-Merge/Rebase of specified branch into the second branch. Immediately removes specified branch. You can

only graft unpublished branches. (alias: gr)

publish [<branch>]
Publishes specified branch to the remote. (alias: pub)

unpublish <branch>
Removes specified branch from the remote. (alias: unp)

install

Installs legit git aliases

help
Displays help for legit command. (alias

and your custom aliases!

Commands :

W help

Display help for darcs or a single commands.

anging and querying the wo g copy:

add Add one or more new files or directories.

remove Remove one or more files or directories from the repository.
mv Move/rename one or more files or directories.

replace Replace a token with a new value for that token.

revert Revert to the recorded version (safe the first time only).
unrevert Undo the last revert (may fail if changes after the revert).
whatsnew Display unrecorded changes in the working copy.

Ccpying changes between the working copy and the repository:

record
unrecord

Save changes in the working copy to the repository as a patch.
Remove recorded patches without changing the working copy.
amend-reccrd Replace a patch with a better version before it leaves your
repository.

Mark any conflicts to the working copy for manual resolution.

N resolve

Direct modification of the repository:

Y tag Tag the contents of the repository with a version name.
A setpref Set a value for a preference (test, predist, ...).
A rallback Record an inverse patch without changing the working director

Querying the repository:

W diff Create a diff between two versions of the repository.

But mostly cosmetic changes

» same concepts, different presentation:
» more attractive interfaces
» more consistent terminology

» focus on more commonly used workflows

Need to go deeper

» different concepts, Git-compatible:
» new VCSs that look very different to Git

» domain-specific Gits

What's wrong with Git”

What's wrong

Data Change

with Git”?

concepts!

Parallel

Management Management Development

Grou
Make a set of e P
- logically
changes =
o related
persistent
changes

Select and
review
changes that
will go in the
next commit

Woarking

Directory Staging Area

Support
parallel
development

Branch

Clean up and
save
uncommitted

Slash

Parallel
Development

Support
parallel
development

Branch

Change
Management

Group
logically
relaled
changes

Prevenl
committing
file

Assumed

gnored Unchangeo

Data
Management

Make a set of
changes
persistent

Name the
commil you
are currently
basing your

work on

Parallel
Development

Support
parallel
develocment

Branch

Thank you!

» to try gitless visit gitless.com
» read our paper at tinyurl.com/qgitless-paper

http://gitless.com
http://tinyurl.com/gitless-paper

