
Declarative Assembly of Web Applications from
Predefined Concepts

by

Santiago Perez De Rosso

Ing., Buenos Aires Institute of Technology (2011)
S.M., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2020

Certified by. .
Daniel Jackson

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Declarative Assembly of Web Applications from Predefined

Concepts

by

Santiago Perez De Rosso

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a new approach to web application development, in which an
application is constructed by configuring and composing concepts drawn from a cat-
alog developed by experts. A concept is a self-contained, reusable unit of behavior
that is motivated by a purpose defined in terms of the needs of an end-user. Each
concept includes both client- and server-side functionality and exports a collection
of components—graphical user interface elements, backed by application logic and
database storage.

To build a web application, the developer imports concepts from the catalog,
tunes them to fit the needs of the application via configuration variables, and links
concept components together to create pages. Components of different concepts may
be executed independently or bound together declaratively with dataflows and syn-
chronization. The instantiation, configuration, linking and binding of components is
all expressed in a simple template language.

The approach has been implemented in a platform called Déjà Vu. We outline and
compare our approach to conventional approaches to web application development
and we present results from a case study in which we used our platform to replicate a
collection of applications previously built by students for a web programming course.

Thesis Supervisor: Daniel Jackson
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This research was funded by the International Design Center, a collaboration between

MIT and the Singapore University of Technology and Design.

I would like to thank my advisor Prof. Daniel Jackson, whose expert guidance

made this work possible. I am also grateful to Prof. Rob Miller and Prof. Hal Abelson

for being part of my thesis committee and for their insightful comments.

Throughout my years at MIT, I had the good fortune to collaborate with many

great MIT students. In particular, I’d like to thank Barry A. McNamara III, Czarina

Lao, and Maryam Archie who worked on Déjà Vu for their SuperUROP and M.Eng.

Barry developed a graphical environment for Déjà Vu, Czarina built libraries and

tools make it easy to implement concepts, and Maryam helped implement the con-

cept catalog and our case study applications. Thank you also to the students that

contributed to Déjà Vu through MIT’s UROP program: Yunyi Zhu, Shinjini Saha,

John Parsons, Stacy Ho, Teddy Katz, and Eric Manzi.

I am grateful for the support and the valuable feedback provided by current and

past members of the Software Design Group: Geoffrey Litt, Sergio Campos, Matt Mc-

Cutchen, Aleksandar Milicevic, Joseph Near, Eunsuk Kang, and Jonathan Edwards.

Thank you to my friends and family. Finally, special thanks to my wife Michelle.

This research would not have been possible without her love, support, and encour-

agement. I dedicate this thesis to my daughter Lucy.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Thesis Statement . 21

1.3 Contributions . 21

1.4 Thesis Outline . 22

2 Conventional Approaches 23

2.1 General-Purpose Tools . 23

2.1.1 Client-Side Programming . 24

2.1.2 Server-Side Programming . 26

2.1.3 Tierless Programming . 27

2.1.4 Full-Stack Components . 28

2.2 Content Management Systems . 28

2.3 End-User Development Tools . 29

2.4 Strengths and Limitations . 30

2.5 Summary . 31

3 Our Approach 33

3.1 Concepts as Modules . 33

3.2 Full-Stack Services . 34

3.3 Declarative Synchronization . 35

3.4 Identifier Sharing . 36

3.5 Strengths and Limitations . 37

7

3.6 Summary . 38

4 Comparison with Conventional Approaches 39

4.1 Rapid Inclusion of End-User Functionality 40

4.1.1 Example Application: SecretParty 40

4.1.2 Discussion . 43

4.2 Deep Integration of End-User Functionality 44

4.2.1 Example Application: TopMovie 44

4.2.2 Discussion . 49

4.3 Implementation of Custom Behavior 50

4.3.1 Example Application: FamilyLog 50

4.3.2 Discussion . 56

4.4 Benefits of Concept Modularity . 56

4.5 Summary . 60

5 Building Applications with Déjà Vu 63

5.1 Including and Configuring Concepts 66

5.1.1 Choosing Concepts . 66

5.1.2 Including Concepts . 66

5.1.3 Configuring Concepts . 68

5.1.4 Other Application Configuration 69

5.2 Linking Components . 69

5.2.1 Including Components . 72

5.2.2 Synchronizing Components . 74

5.3 Building Reactive User Interfaces . 75

5.4 Specifying Security Policies . 76

5.5 Styling the Application . 77

5.5.1 Themes . 79

5.6 Customizing a Concept Implementation 79

5.7 Summary . 80

8

6 Platform Semantics 81

6.1 Introduction . 82

6.2 First Iteration: Components . 83

6.2.1 Definitions . 83

6.2.2 Concept Component Behavior 88

6.2.3 Rules . 89

6.2.4 Initial Application Instance Configuration 89

6.3 Second Iteration: Clients . 94

6.3.1 Definitions . 94

6.3.2 Concept Component Behavior 95

6.3.3 Rules . 96

6.4 Third Iteration: Full Semantics . 99

6.4.1 Definitions . 100

6.4.2 Concept Component Behavior 100

6.4.3 Rules . 101

6.5 Core Syntax and Translation . 107

6.6 Other Considerations . 109

6.7 Summary . 109

7 Platform Implementation 111

7.1 Client-Side Library . 112

7.1.1 Event Dispatching . 113

7.1.2 Client-Server Communication 113

7.2 Gateway Server . 114

7.2.1 Security . 114

7.2.2 Transactions . 119

7.3 Compiler . 120

7.4 Concept Catalog . 120

7.4.1 Authoring Concepts . 121

7.4.2 Criteria for Creating Concepts 122

9

7.5 Summary . 123

8 Case Study 125

8.1 Research Questions . 125

8.2 Method . 126

8.3 Study Subjects . 127

8.3.1 Project Descriptions . 128

8.4 Study Replicas . 130

8.5 Modularity Analysis . 131

8.6 Effort Savings . 134

8.6.1 Metric Considerations . 134

8.6.2 Effort Savings Metric . 141

8.6.3 Adjustment Factor Values . 143

8.6.4 Results . 144

8.7 Quality Analysis . 146

8.7.1 Usability . 146

8.7.2 Security . 154

8.7.3 Performance . 154

8.7.4 Other Quality Attributes . 155

8.8 Threats to Validity . 156

8.9 Summary . 156

9 Related Work 159

9.1 Programming Paradigms . 159

9.1.1 Object-Oriented Programming 159

9.1.2 Subject-Oriented Programming 160

9.1.3 Aspect-Oriented Programming 160

9.1.4 Feature-Oriented Programming 161

9.1.5 Event-Driven Programming 161

9.1.6 Postmodern Programming . 162

9.1.7 Behavioral Programming . 162

10

9.2 Architectural Patterns . 163

9.2.1 Microservices . 163

9.2.2 Entity-Component-System . 163

9.3 Web Application Development . 164

9.3.1 Content Management Systems 164

9.3.2 End-User Development Tools 165

9.3.3 Web Frameworks . 165

9.4 Other Related Work . 166

9.4.1 Design Patterns . 166

9.4.2 Federated Databases . 166

9.5 Summary . 167

10 Discussion 169

10.1 Future Directions . 169

10.1.1 Platform Improvements . 169

10.1.2 Easy Concept Authoring . 171

10.1.3 A Graphical Environment . 173

10.2 Open Questions . 178

10.3 Conclusion . 179

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

List of Figures

1-1 The same rating concept in multiple applications: applied to businesses

on Yelp, products on Amazon, hotels on Hotels.com, applications on

Apple’s app store, and browser extensions on Firefox 20

1-2 An error in the implementation of the shopping cart concept: setting

the quantity to zero doesn’t remove the item from the cart (Image from

Nielsen Norman group) . 20

4-1 The configuration file of SecretParty 40

4-2 The style sheet file of SecretParty . 40

4-3 The code for the landing page of SecretParty 41

4-4 The code for the party page of SecretParty 42

4-5 The configuration file of TopMovie 45

4-6 The style sheet file of TopMovie . 46

4-7 The code for the landing page of TopMovie 47

4-8 The code for the top movies page of TopMovie 48

4-9 The code for the show movie component of TopMovie 49

4-10 The configuration file of FamilyLog 51

4-11 The style sheet file of FamilyLog . 52

4-12 The code for the landing page of FamilyLog 53

4-13 The code for the parent home page of FamilyLog 54

4-14 The code for the child home page of FamilyLog 55

4-15 Two client-side code variants for submit-post: using Angular and React 57

13

4-16 Two server-side code variants for submit-post: using a monolithic

architecture and microservices . 58

4-17 submit-post component in Déjà Vu 58

5-1 Screenshot of the register user page of Slacker News 64

5-2 Screenshot of the submit post page of Slacker News 64

5-3 Screenshot of the home page of Slacker News 65

5-4 Screenshot of the post detail page of Slacker News 65

5-5 Screenshots of two components of Scoring 66

5-6 The configuration file of Slacker News 67

5-7 Excerpt of Slacker News’s submit-post component 70

5-8 Excerpt of Slacker News’s show-post component 71

5-9 Excerpt of Slacker News’s upvote component 75

5-10 Excerpt of Slacker News’s global style sheet file 78

6-1 Inference rule for application component instance configurations . . . 89

6-2 Inference rules for application instance configurations with clients . . 96

6-3 Inference rules for application instance configurations with synchro-

nization . 102

6-4 Core Déjà Vu syntax in Backus-Naur form 107

6-5 Semantic functions that translate grammar rules to a set of initial

application instance configurations 108

6-6 Semantic functions that translate grammar rules to an initial applica-

tion server state . 108

7-1 Architecture of Déjà Vu . 112

7-2 Excerpt of the component tree for route "/" of Slacker News 115

7-3 Component path check . 116

7-4 Transaction structure check . 117

7-5 Input check . 118

14

8-1 An error in the implementation of the authentication concept: special

symbols are not allowed, which forces the user to choose a less secure

password . 147

8-2 An error in the implementation of the authentication concept: if a user

enters a short password, the error message doesn’t say the minimum

required length . 148

8-3 An error in the implementation of the passkey concept caused by an

internal inconsistency . 149

8-4 A coupling of actions from two different concepts: user profiles and

authentication . 150

8-5 A potential coupling of two concepts 151

8-6 Update profile in the Déjà Vu implementation of Accord 153

10-1 Including and configuring concepts 174

10-2 Input/Output binding . 174

10-3 Input/Output hints . 175

10-4 Preview mode . 175

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

List of Tables

5.1 Concept catalog . 68

7.1 Concept implementations in our catalog 121

8.1 Student projects we replicated in Déjà Vu 127

8.2 Concept usage in sample applications 132

8.3 Libraries and frameworks used in the student implementations 135

8.4 Libraries providing some concept functionality 139

8.5 Déjà Vu effort savings . 144

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

Chapter 1

Introduction

1.1 Motivation

As a user, you might have noticed the fundamental similarities between the many

applications you use on a day-to-day basis. Maybe it was the day you were scrolling

through your Facebook news feed and then through your Twitter feed; or giving a

5-star review to a restaurant on Yelp, and then to a book on Amazon. And just as

you, as a user, experience the same rating concept in different variants in multiple

applications (Fig. 1-1), so the developers of those applications are, for the most part,

implementing that concept afresh as if it had never been implemented before.

In each of these cases, the developer may be implementing something slightly

different: a rating of a post in one case, and of a user in another. The premise

of this thesis, however, is that these are merely instantiations of the same generic

concept, and that if this genericity could be captured, application development could

be recast as a combination of pre-existing concepts in novel ways. This might then

allow applications to be assembled with much less effort, since the core functionality

of the individual concepts would not need to be repeatedly rebuilt.

Moreover, the reuse of concepts could help developers build more usable appli-

cations. Even for prevalent and seemingly straightforward concepts like that of a

shopping cart, experienced developers can miss important details of the concept’s

behavior—such as the fact that setting the quantity to zero should remove the item

19

Figure 1-1: The same
rating concept in multi-
ple applications: applied
to businesses on Yelp,
products on Amazon, ho-
tels on Hotels.com, ap-
plications on Apple’s app
store, and browser exten-
sions on Firefox

Figure 1-2: An error in the implementation of the shop-
ping cart concept: setting the quantity to zero doesn’t
remove the item from the cart (Image from Nielsen Norman
group)

from the cart (Fig. 1-2).1 A catalog of pre-packaged concepts would capture, and

let application developers leverage, all the design work done to invent and refine the

right concepts.

This thesis presents a new approach to web application development and a new

platform, called Déjà Vu, that supports building web applications in this new style.

In Déjà Vu, a web application is constructed by combining concepts that are im-

plemented as reusable modules. The assembly requires no procedural code: con-

cept components are glued together by declarative bindings that ensure appropriate

synchronization and dataflow. These bindings are expressed in a simple template

language, augmenting conventional layout declarations that determine which user in-

terface widgets from which concepts are used, and how they are placed on the page.

The net result, as we demonstrate through a case study, is that applications with

1https://www.nngroup.com/articles/shopping-cart/

20

https://www.nngroup.com/articles/shopping-cart/

fairly complex behavior can be built with little effort, and that concept reuse helps

prevent several usability problems in the final applications.

1.2 Thesis Statement

The thesis of this dissertation is that assembling applications from predefined concepts

is a viable approach to developing applications with rich graphical user interfaces

and complex behavior. To support this claim, we present results from a case study

in which we used our platform to replicate a set of applications previously built by

students for a web programming course using standard general-purpose tools. We also

compare our approach to conventional approaches to web application development

and show, through a set of small examples, how complex application behavior that can

be easily implemented using our approach is harder to implement with conventional

approaches.

Our hope is that this thesis will promote making concept design and reuse a central

aspect of software development and reduce the effort and expertise required to build

usable applications with complex behavior.

1.3 Contributions

The idea that software should be built from prefabricated parts dates back at least to

1968 [40]. Since then, many mechanisms to support large-scale software reuse have

been developed. What’s new in this thesis is what the parts are—implementations of

concepts—and how they are put together—by declarative synchronization.

This thesis makes the following contributions:

• A new approach to application development, showing how functionality can be

understood as a composition of concepts drawn from a catalog.

• A new platform for application development, that supports independent devel-

opment of concepts, a simple template language for instantiating and composing

concepts, and an infrastructure for executing the resulting applications.

21

• A case study, in which we used the platform to build a suite of non-trivial

sample applications.

1.4 Thesis Outline

This thesis begins with an overview of current approaches to web application devel-

opment in Chapter 2. The core of the thesis is Chapters 3-7, in which we explain the

key ideas in our approach, compare our approach to conventional approaches to web

application development, show what building applications with Déjà Vu looks like,

and discuss the semantics and implementation of our platform. Chapter 8 presents

the case study we conducted. Finally, we discuss related work in Chapter 9 and

conclude in Chapter 10 with a discussion on future directions and open questions.

An initial report on the work described in this thesis appears in [51]. Compared

to [51], this thesis includes a set of small examples to illustrate the benefits of our

approach compared to conventional approaches to web application development, for-

malizes the semantics of our platform, and provides a much fuller analysis of the

applications we replicated in our case study.

22

Chapter 2

Conventional Approaches

The purpose of web development is to build a web application. A web application

is a type of distributed application that consists of a server, a database, and many

clients. The client code runs on a web browser and communicates with the server

over the internet or over some other computer network. The server interacts with the

database and provides functionality for clients.

In this chapter, we give an overview of three popular approaches for building

web applications: using general-purpose tools (§2.1), using a content management

system (§2.2), and using an end-user development tool (§2.3). Finally, we conclude

the chapter with a discussion on the strengths and limitations of these approaches

(§2.4).

2.1 General-Purpose Tools

Using general-purpose tools, a developer writes the code that runs on clients and

the code that runs on the server. Client-side or front-end programming (§2.1.1) is

concerned with the development of the client-side code of the application, which

deals with the user interface of the application. Server-side or back-end programming

(§2.1.2) is concerned with the development of the server-side code of the application,

which implements business logic, retrieves and updates data from the database, and

serves views for clients. A tierless programming language (§2.1.3) blurs the traditional

23

client-server distinction and allows a developer to develop both client- and server-side

functionality using one programming language. A full-stack component (§2.1.4) is

a graphical user interface element that interacts with a web service and allows a

developer to include both client- and server-side functionality into the application

at once. These components are said to be full-stack because they encapsulate both

client- and server-side functionality.

2.1.1 Client-Side Programming

The client-side functionality of a web application is typically developed using HTML,

CSS, and JavaScript. HTML is a markup language for defining the meaning and

structure of web content. HTML uses markup to annotate content, such as text or

images, for display in a web browser.

CSS is a style sheet language for describing the presentation of an HTML docu-

ment. A style sheet consists of a set of rules, where each rule has a set of selectors

and a list of property-value declarations. The selectors declare which HTML elements

the rule should apply to, and the list of property-value declarations specify how the

matching HTML elements should be styled. For example, a developer can write a

selector to match all heading elements, and a property-value declaration to change

the font color of the matched elements to blue. The result of writing this rule is that

when a browser renders the HTML document, all headings will appear in blue.

JavaScript is a scripting language that allows a developer to build interactive web

pages. With JavaScript, a developer can, for example, attach an event handler to

an HTML element and in response to some user interaction, such as a button click,

mutate the contents of the web page or send a request to the server.

Nowadays developers have more language options for client-side programming. For

example, TypeScript1 is a popular2 alternative to JavaScript that adds optional static

typing to the language, and SASS3 extends CSS with features such as variables and

1https://www.typescriptlang.org/
2https://2018.stateofjs.com/javascript-flavors/overview/
3https://sass-lang.com/

24

https://www.typescriptlang.org/
https://2018.stateofjs.com/javascript-flavors/overview/
https://sass-lang.com/

inheritance. In the end, however, all these other languages end up being compiled

to HTML, CSS, and JavaScript. This is because web browsers can only execute

JavaScript and render HTML documents styled with CSS.

Client-Side Libraries and Frameworks

A modern web application is typically developed using a front-end framework or

library. The three most popular4 client-side libraries and frameworks are React5,

Angular6 and Vue7. While these frameworks have differences in terms of functionality,

they all provide a way for the developer to declare components and data bindings.

A component is an independent, reusable, graphical user interface element. A

component can have input properties and an internal state. A component can also

produce outputs for other components to use. Components group together HTML,

CSS and JavaScript code, offering a different kind of modularity to the conventional

modularity in which, for example, there’s one HTML file per web page and one CSS

and JavaScript file for the entire application. The benefit of components is that they

allow a developer to split the user interface of an application into reusable pieces, and

think about each piece in isolation from the rest of the functionality.

All three frameworks also have some built-in mechanism to declare data bindings.

A data binding establishes a connection between a data source and data consumer.

In a data binding, each data change is propagated to the consumer automatically.

This feature could be used in, for example, an HTML template to display the value

of a JavaScript variable and have the framework automatically refresh the contents

of the component every time the value of the variable changes.

These two features, components and data bindings, simplify client-side program-

ming because they give the developer a way to capture and reuse graphical user inter-

face elements and saves the developer from having to write custom code to propagate

data updates.

4https://2018.stateofjs.com/front-end-frameworks/overview/
5https://reactjs.org/
6https://angular.io/
7https://vuejs.org/

25

https://2018.stateofjs.com/front-end-frameworks/overview/
https://reactjs.org/
https://angular.io/
https://vuejs.org/

2.1.2 Server-Side Programming

Server-side code can be written in any number of programming languages. The most

popular languages for server-side programming include PHP, Java, C#, JavaScript,

Ruby, and Python.8 These are all very powerful, general-purpose programming lan-

guages that give the developer the flexibility to implement complex business logic.

However, to implement server-side functionality, it is not enough for a developer to

know how to program in one of these languages. A developer must also have some

familiarity with the HTTP protocol, API design and database query languages, so as

to be able to process client requests and interact with the database.

For example, it is up to the developer to choose the best database model for

the application. There are many types of databases: relational, document-oriented,

graph, and so on. Each type has its own query language and different performance

trade-offs. Similarly, there are different models for building an application program-

ming interface (API). An API is a communication protocol between a client and a

server. An API establishes the type of requests a client can make to the server, and

the type of responses the client can expect to receive from the server. The two most

popular models for API design and implementation are Representational State Trans-

fer (REST) [16] and GraphQL9. Each model has its own approach to declaring and

implementing a server API and different trade-offs.

For transmitting data between a client and the server, web applications typically

use JSON. JSON is a language-independent data interchange format that originated

as the object literal language of JavaScript. JSON uses human-readable text to

transmit data objects consisting of attribute-value pairs. JSON is also widely used

as a configuration language. For example, NPM10, a package manager for JavaScript,

expects package authors to create a JSON file to specify the name of the package, its

software dependencies, and other relevant package information.

8https://w3techs.com/technologies/overview/programming_language
9https://graphql.org/

10https://www.npmjs.com/

26

https://w3techs.com/technologies/overview/programming_language
https://graphql.org/
https://www.npmjs.com/

Monolithic and Microservices Architecture

The server-side functionality of an application can be implemented as one program, or

it can be split into multiple independent programs that implement different aspects of

the server-side functionality. In a monolithic architecture, the server-side functionality

of an application is implemented as one program. In a microservices architecture [44],

the server-side functionality of an application is split into a set of small programs,

called microservices, that communicate with each other via HTTP.

Compared to a monolithic architecture, a microservices architecture enforces strong

module boundaries between server-side functionality, allows different parts of the

server-side functionality to be implemented using different programming languages

and storage technologies, and allows each service to be tested and deployed indepen-

dently. But this flexibility comes at a cost: the developer now has to additionally

write code to integrate different remote services, which is not necessary in a mono-

lithic architecture because all the functionality is part of the same program. Service

integration code can be very complex since remote calls can fail and achieving strong

data consistency might require the developer to implement complex communication

protocols between the different services.

2.1.3 Tierless Programming

A tierless programming language, such as Links [10] and Ur/Web [8], combines within

one language all the pieces of web application development: client- and server-side

programming plus database querying. For example, instead of having to define a

server-side API and write code to send HTTP requests from the client, a developer

can invoke a server-side function from client-side code as it were any other client-side

function.

Compared to a general-purpose language, a tierless programming language can re-

duce some of the complexity in web application development and help prevent several

kinds of programming errors that can lead to security problems or bugs in web appli-

cations. But a tierless programming language, like a general-purpose programming

27

language, targets professional developers and still requires the developer to write most

of the end-user behavior of the application.

2.1.4 Full-Stack Components

Some web API services offer full-stack components. These components are said to

be full-stack because they include both client- and server-side functionality: full-

stack components can make requests to a web API service without requiring the

developer to write code to mediate such communication. However, deeply integrating

the functionality provided by a full-stack component with the rest of the application

functionality might require the developer to open the full-stack black box and write

server-side code.

For example, a developer can use Disqus11 to add commenting functionality to an

application. If the commenting functionality is isolated from the rest of the applica-

tion functionality, a developer can add commenting functionality to the application

by only including some JavaScript and writing a little HTML. But if the developer

wants to integrate commenting with other application functionality such as upvoting

for example, then the developer would have to write server-side code. For example,

the developer might have to create a notification hook for the server of the application

to be notified by the web API service when a new comment is created, so that the

new comment can be given an initial score in the application database.

2.2 Content Management Systems

Another option for web application development is to use a content management

system, such as Drupal12 or WordPress13. A content management system supports

the creation of websites, such as blogs and media sites, whose functionality primarily

involves reading and writing content. In many content management systems, the

content management functionality is very sophisticated and can include features such
11https://disqus.com/
12https://www.drupal.org
13https://wordpress.com/

28

https://disqus.com/
https://www.drupal.org
https://wordpress.com/

as version control, access control, workflow and publishing control, and advanced

content templates.

Many content management systems provide a large suite of plug-ins that allow a

website to be extended with new features. These plug-ins are full-stack, and importing

and configuring them is usually straightforward. But because plug-ins lack a generic

composition mechanism, they can usually only be combined in certain predefined

ways. More application-specific combinations typically require modifying server-side

or content-management-system code. For example, let’s say the developer wants to

let users comment on blog posts and upvote comments by other users. The developer

might be able to include a plug-in to add comments to the application, but if the

commenting plug-in is not designed to work with the plug-in providing the upvot-

ing functionality, the developer would typically have to write complex glue code to

integrate the two plug-ins.

2.3 End-User Development Tools

A third option is to use an end-user development tool. An end-user development

tool enables people who are not professional software developers to create software

artifacts [37]. Some examples of end-user development tools include low-code devel-

opment platforms [57], such as OutSystems14, Mendix15, and Microsoft Power Apps16,

and the many tools and languages for programming data-centric applications, such as

Mavo [64] and Espalier [39]. These tools typically offer a visual interface and domain-

specific languages to specify a schema, queries, updates, and views. For standard

CRUD (create-read-update-delete) functionality, these platforms can work well, and

they allow arbitrary customization of queries and updates. Code for handling the

mechanics of graphical user interface elements, data storage, server requests, etc., is

provided and hidden, and this is a great help. But an end-user development tool still

requires the developer to write all the code for the application logic. Moreover, func-

14https://www.outsystems.com
15https://www.mendix.com
16https://powerapps.microsoft.com

29

https://www.outsystems.com
https://www.mendix.com
https://powerapps.microsoft.com

tionality that is not expressible in the language—because it involves some algorithmic

complexity, or a more complex user interface widget—must be provided by pre-built

plug-ins. As with content management systems, such plug-ins can only be composed

in ad hoc ways, and may require complex glue code.

2.4 Strengths and Limitations

In summary, these are the strengths and limitations of conventional approaches to

web application development:

• General-Purpose Tools. General-purpose tools are flexible, but require signif-

icant programming expertise. While any web application can be developed

using this approach, the developer needs to know how to write complex code

that deals with HTTP requests and database queries. Full-stack components

can help incorporate client- and server-side functionality quickly, but only if

the full-stack component behavior can be kept largely isolated from the rest

of the application functionality. Deeply integrating the full-stack functionality

with the rest of the application functionality typically requires writing server-

side code to get notified when certain events occur, so that other parts of the

application can be updated accordingly.

• Content Management Systems. The built-in support that content management

systems provide for managing the creation and modification of content allows

a user with no programming experience to easily add, modify and remove web

content. Moreover, many content management systems have a large suite of

plug-ins, which allows a developer to easily add full-stack behavior. A problem,

however, is that plug-ins lack a generic composition mechanism. Therefore,

integrating different plug-ins may require writing complicated server-side code.

• End-User Development Tools. While typically not as flexible as general-purpose

tools, end-user development tools allow complex behavior to be specified at a

very high level. A problem, however, is that the developer still has to write most

30

of the end-user behavior of the application. The built-in functionality is usually

limited to graphical user interface elements such as text boxes and buttons. It

is still up to the developer to write code to specify what would happen when,

for example, the end-user clicks on a button. Plug-ins that allow end-user

behavior to be quickly added to an application lack a composition mechanism,

and combining them with other plug-ins can be as difficult as combining plug-ins

in a content management system.

2.5 Summary

There are three main approaches to web application development: using general-

purpose tools, a content management system, or an end-user development tool. General-

purpose tools are flexible, but require significant programming expertise. A developer

needs to know how to handle HTTP requests, how to design and implement APIs,

write database queries, and implement client-side interactive functionality. In a con-

tent management system a developer can quickly add full-stack functionality to an

application through plug-ins. But plug-ins lack a generic composition mechanism, so

deeply integrating different plug-ins can be challenging and require writing server-side

code. An end-user development tool typically offers a visual interface and domain-

specific languages for specifying a schema, queries, and updates. Code for handling

data storage, server requests, and so on is provided and hidden. But the developer

still has to write most of the end-user behavior of the application.

In the next chapter, we present our approach to web application development,

which allows the developer to include full-stack functionality to the application and

compose the functionality declaratively, without writing any server-side code. Our

approach addresses many of the limitations of the conventional approaches to web

application development that we discussed in this chapter.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

Chapter 3

Our Approach

There are four key ideas in our approach to web application development. The first

two ideas, concepts as modules (§3.1) and full-stack services (§3.2), define the elements

Déjà Vu applications are made of: full-stack implementations of concepts. The last

two ideas, declarative synchronization (§3.3) and sharing identifiers (§3.4), determine

the mechanism by which concepts are combined to achieve some greater purpose:

through the synchronization of server-side actions and the binding of concept entities

by shared identifiers.

3.1 Concepts as Modules

In our approach, concepts are the building blocks of applications. A concept is a self-

contained, reusable increment of functionality that is motivated by a purpose defined

in terms of the needs of an end-user [28]. For example, a posting concept manages

the creation and display of posts, and a scoring concept lets users assign scores to

items and display items sorted by total score value.

A concept is a new type of module that encapsulates data and behavior that im-

plements one end-user purpose. A concept is more fine-grained than a traditional

plug-in in a content management system and it is also more fine-grained than a mi-

croservice. For example, a plug-in or microservice would generally treat the concepts

associated with user posting, such as scoring and comments, as part of a single plug-

33

in or microservice. Also, a concept is more coarse than an object in object-oriented

programming or an abstract data type [38]. For example, implementing a transfer

concept might require multiple objects or abstract data types: an account type to save

the balance of an account and a transfer type to record a transfer between accounts.

By making concepts the units from which Déjà Vu applications are made of, our

approach emphasizes the design and implementation of concepts, making concepts

and their composition a central aspect of application development.

3.2 Full-Stack Services

A concept encapsulates all the code necessary to support its end-user purpose and

exports a set of components. All the front-end and back-end code that implements the

concept functionality is hidden from the developer, who only needs to be concerned

with the exported components of a concept. Each component of a concept consists of

a front-end widget with input and output properties and a set of associated server-side

actions.

A Déjà Vu application instance includes a set of concept instances that run in

parallel. A concept instance is a concrete occurrence of a concept that exists only

during the runtime of a Déjà Vu application. For example, if we include a scoring

concept in a Déjà Vu application, a new instance of the scoring concept is created each

time we run the application and terminated once we stop the application. The data

of a concept instance, however, could persist after the concept instance is terminated

if the developer chooses so. Of course, a Déjà Vu application can be deployed like a

normal web application, and an instance of scoring will be deployed as part of the

application as well. Concept instances are not multi-tenant: each Déjà Vu application

has its own set of concept instances, even if they share the same concepts.

Each concept instance runs independently of other concept instances: concept

instances cannot communicate with each other or share any data. Abstractly, a

concept instance is a state machine that changes state in response to actions issued by

the end-user of the application through the front-end, or in response to system events,

34

such as the loading of a component into the user’s web browser. Since each concept

instance includes its own components, server, and database, a concept instance is a

full-stack service in its own right: it provides a service to the end-users of a Déjà Vu

application that includes client- and server-side functionality and data persistence.

3.3 Declarative Synchronization

Let’s say we want to create an application in which end-users can create posts with an

initial score. To do this, we include a posting and scoring concept to our application,

and we create an application component that includes the create post component of

the posting concept and the create score component of the scoring concept. So far,

we have an application that enables end-users to create new posts by interacting with

the create post component and to create new scores by interacting with the create

score component.

However, our goal is for an end-user to be able to create a post with an initial score

at the same time. For this, we need the server-side action of the create post component

and the server-side action of the create score component to occur together. In Déjà

Vu, to make the server-side actions of components occur together, the developer

indicates, in the same file that specifies the included components, which actions of

the components are to be synchronized. When a component runs its server-side

action, Déjà Vu will run the server-side actions of all the synchronized components.

Thus, if in our application we synchronize the create post component with the create

score score component, when an end-user interacts with create post to create a new

post, both a post and a score object will be created at the same time.

The synchronization of actions is transactional, ensuring that all or none of the

concept server-side actions that are part of a transaction occur. That is, if one server-

side action fails, all the other server-side actions in the transaction will fail as well. A

failed transaction produces no side-effect on the state of the concept instances involved

in the transaction—it is as if the transaction never occurred in the first place.

35

There are various reasons why a concept instance might choose to fail the execution

of a server-side action. Perhaps the input values given to the action are invalid, or

perhaps the purpose of the action is to perform a server-side check. For example,

the server-side action of the create score component of the scoring concept fails the

transaction if the given score value is negative. The same scoring concept could also

have an action that verifies that a given target has a score, and fail the transaction if

it doesn’t. A developer can include the component associated with this check action

in a transaction with other concept components to, for example, only let a user create

a new score if the target of the score doesn’t have a score already.

The same transaction mechanism can be used for security. Concepts are provided

for user authentication and access control whose actions are designed to fail when

access is denied. By synchronizing the authentication components with other concept

components, a developer can ensure that certain actions only occur when the logged-in

user has the permissions required to perform the action.

Of course, not all components need to be synchronized. Components can also be

placed on a web page so that they run independently of one another. As an end-

user interacts with the components on the page, the server-side actions of different

concept instances can be triggered by the end-user, and run independently from one

another. The inputs and outputs of components can still be related however, even if

the components are not synchronized.

3.4 Identifier Sharing

Often, concept instances hold distinct views of entities that can be thought of as

shared. For example, when a scoring concept is combined with a posting concept,

one can imagine a single entity having both a scoring view and a posting view: the

scoring view contains the scoring value of the entity and the posting view contains

the textual post. But, as explained above, there is no explicit sharing of data between

concepts. Instead, common identifiers are used to implicitly bind distinct entity views.

This is achieved using a special platform function that generates an identifier that

36

is, for practical purposes, distinct from any other identifier ever generated by the

platform function—the identifier is a so-called universally unique identifier (UUID)

[36]. The identifier is then passed as input to the two components, ensuring that the

entities they create will subsequently be associated by the shared identifier.

By convention, concept components for creating entities take an identifier as input.

When an identifier value is given as input, the component uses the given identifier as

the identifier of the new entity to create, instead of choosing a fresh identifier server-

side. In those cases in which the entities being created can refer to other entities, the

component has multiple inputs that take identifier values. For example, the create

score component has an input for the identifier of the score entity being created,

one for the identifier of the source entity giving the score, and another input for the

identifier of the target entity that is being assigned the new score.

3.5 Strengths and Limitations

Our approach, like in content management systems, allows the developer to quickly

include full-stack functionality at once by adding a new concept to the application.

Unlike plug-ins in content management systems, however, our concepts have a generic

composition mechanism that allows a developer to compose different concepts by

synchronizing their actions, without requiring the developer to write any server-side

code. Since concept components include client-side interactive behavior, there’s no

need for a developer to write code to respond to user events or send HTTP requests. A

developer has only to specify what actions should be synchronized, and the platform

will take care of running the server-side actions in a transaction.

A limitation of our approach is that a developer is restricted to building what can

be built with the concepts available in the catalog. While a developer can add new

concepts to the catalog, concepts are implemented using general-purpose tools and

thus require more expertise and effort. However, as we’ll see later, our composition

mechanism is flexible enough that application-specific behavior that might appear

37

like it would need a new concept can often be implemented by combining existing

concepts.

3.6 Summary

In our approach, concepts encapsulate full-stack functionality that implement an

end-user purpose. Concepts can be combined together by synchronizing server-side

actions. To link different concepts entities the developer can use a built-in compo-

nent to generate a unique identifier and share the identifier with different concept

components, so that the components use the same identifier when they create a new

entity.

Our approach allows the developer to quickly include full-stack functionality to an

application. The mechanism by which concepts are put together allows a developer

to integrate concepts, declaratively, without writing complicated glue code.

In the next chapter, we are going to present three example applications that

illustrate the benefits of our approach compared to the conventional approaches to

web application development we discussed in the previous chapter.

38

Chapter 4

Comparison with Conventional

Approaches

In this chapter, we present three small example applications built using our Déjà Vu

platform. The goal is to show, by example, the key benefits of Déjà Vu compared

to conventional approaches. The goal is not to thoroughly explain how to build

applications using Déjà Vu—Chapter 5 will provide that explanation.

The three small example applications are SecretParty, TopMovie, and FamilyLog.

SecretParty shows how easy it is to rapidly include end-user functionality to a Déjà

Vu application (§4.1). TopMovie shows how it is possible to deeply integrate different

concepts in Déjà Vu, without having to write any server-side code (§4.2). Finally,

FamilyLog shows how custom behavior that might at first appear like it would need

a very specific concept can be implemented by combining existing concepts from the

catalog (§4.3). To conclude the chapter, we include a discussion on the benefits of

our concept modularity compared to the conventional modularity mechanisms and

software architectures used in general-purpose tools (§4.4).

39

1 {
2 "name": "secretparty",
3 "usedConcepts": {
4 "passkey": {},
5 "event": {},
6 "geolocation": {},
7 "chat": {}
8 },
9 "routes": [

10 { "path": "", "component": "landing" },
11 { "path": "/party", "component": "party" }
12]
13 }

Figure 4-1: The configuration file of SecretParty

1 @import "~@deja-vu/themes/scss/minimalist.scss";
2 main { margin: 30px; }
3 .side-by-side { display: flex; }
4 .map { height: 300px !important ; }
5 .evt { margin-right: 20px; }

Figure 4-2: The style sheet file of SecretParty

4.1 Rapid Inclusion of End-User Functionality

4.1.1 Example Application: SecretParty

In SecretParty users can create events with a secret code, date, time, and location.

Users that know the secret code of a party can input the code to see the party date,

time, and location. Users can also chat with guests to share any information or ask

any questions about the party.

The entire code for the Déjà Vu application is shown in Figs. 4-1 through 4-4,

together with screenshots of how the application appears to end-users. The code for

the application consists of a JSON configuration file to include concepts and configure

other application information (Fig. 4-1), a SASS style sheet file to customize the

presentation of the application (Fig. 4-2) and an HTML file for each component

40

1 <dv.component name="landing">
2 <main>
3 <h1>View Party</h1>
4 <dv.tx>
5 <passkey.sign-in /><dv.link href="/party" />
6 </dv.tx>
7 <h1>New Party</h1>
8 <dv.tx>
9 <dv.gen-id /><dv.status />

10 <passkey.create-passkey id=dv.gen-id.id hidden=true />
11 <event.create-event class="evt" id=dv.gen-id.id
12 showOptionToSubmit=false />
13 <div class="map">
14 <geolocation.create-marker-from-map id=dv.gen-id.id
15 showOptionToSubmit=false />
16 </div>
17 <dv.button-link href="/party">Create Party</dv.button-link>
18 </dv.tx>
19 </main>
20 </dv.component>

Figure 4-3: The code for the landing page of SecretParty

41

1 <dv.component name="party">
2 <main>
3 <passkey.logged-in />
4 <h1>{{passkey.logged-in.passkey?.code}}</h1>
5 <event.show-event id=passkey.logged-in.passkey?.id waitOn=['id'] />
6 <geolocation.show-marker id=passkey.logged-in.passkey?.id
7 hidden=true />
8 <div class="map">
9 <geolocation.display-map expectMarkers=true

10 markers=[geolocation.show-marker.loadedMarker] />
11 </div>
12 <h2>Chat</h2>
13 <chat.show-chat id=passkey.logged-in.passkey?.id
14 showId=false showMessageId=false />
15 <chat.create-message authorId="anonymous"
16 chatId=passkey.logged-in.passkey?.id />
17 </main>
18 </dv.component>

Figure 4-4: The code for the party page of SecretParty

42

(Fig. 4-3 and Fig. 4-4). The application SecretParty has two pages: a landing page

that lets users create a new party or input a party code to view an existing party

(Fig. 4-3), and a party page that shows the party information and lets users chat

(Fig. 4-4). The JSON configuration file (Fig. 4-1) specifies the concepts we use in

the application (lines 4-7) and the routes for the two pages (lines 10-11). We include

Passkey (line 4) to implement the secret code behavior, Event and Geolocation (lines

5-6) for the party date and location respectively, and Chat (line 7) to create a chat

room for party guests.

To create a party (Fig. 4-3), we synchronize, using the dv.tx tag, the create com-

ponents of passkey (line 10), event (lines 11-12) and geolocation (lines 14-15). The

effect of doing so is that when the user clicks on the “Create Party” button, a new

passkey, event, and geolocation marker is created. The passkey code is generated

server-side by the action of create-passkey. To bind the different entities together,

we include the built-in component dv.gen-id (line 9) and share the generated iden-

tifier with all the create components (lines 10, 11, and 14). To redirect the user to

the party page after the party is created we include a dv.button-link as part of

the transaction (line 17). The button link will trigger the transaction when the end-

user clicks on the button and it will redirect the end-user to the party page if the

transaction succeeds. Finally, in the party page code (Fig. 4-4), we retrieve the party

identifier from the logged-in passkey (line 3), and use it to show the secret code (line

4), date (line 5), location (line 6), and chat room (line 13) of the party.

In the application style sheet file (Fig. 4-2), we include one of the built-in themes

of our platform (line 1) and define some CSS rules for styling (lines 2-5).

4.1.2 Discussion

Note how with less than 60 lines of HTML, SASS and JSON code, and no JavaScript

or server-side code, we are able to implement an application that has quite a lot of rich

behavior: passkey generation and verification, maps, events, and chat functionality.

Simply by writing a little JSON and HTML we can include concepts, such as Chat

and Geolocation, that package a lot of end-user functionality.

43

Implementing SecretParty using general-purpose tools would require writing com-

plicated client- and server-side code. For example, while there are many APIs that

let you include a map to your application, we would still have to write JavaScript to

retrieve the location the user selected on the map, and include it in the new-party

HTTP request so that we can save the location in the database. The server-side code

would have to save the party information in the database and retrieve the informa-

tion on the show-party page. The server-side code would also have to authenticate

user-provided passkey codes. On the bright side, it might be possible to use a full-

stack component for chat functionality, since the chat functionality in SecretParty is

relatively isolated from the rest of the application functionality.

An end-user tool would require us to write all of the end-user behavior of Secret-

Party. For example, we would have to specify what happens when the user clicks on

the create party button: obtain data from the form and save it to the database.

In a content management system we could define a party content type, which

can even include map information through a map plug-in. Through some advanced

configuration we could open party creation to any user of the application and not just

the administrator of the application. But unfortunately an end-user would still be

forced to create an account before creating a party. This means that an anonymous

user would not be able to create a secret party without registering.

4.2 Deep Integration of End-User Functionality

4.2.1 Example Application: TopMovie

In TopMovie, users can post movie titles and upvote movies submitted by other users.

The movies with the most votes appear towards the top of the top movies page. The

code for TopMovie is shown in Figs. 4-5 through 4-9, together with screenshots of

how the application appears to end-users. The application has two pages: a landing

page for users to register or sign-in (Fig. 4-7) and the top movies page that shows all

44

1 {
2 "name": "topmovie",
3 "usedConcepts": {
4 "movie": {
5 "name": "property",
6 "config": {
7 "schema": {
8 "title": "Movie", "type": "object",
9 "properties": { "title": { "type": "string" } },

10 "required": ["title"]
11 }
12 }
13 },
14 "authentication": {},
15 "scoring": {}
16 },
17 "routes": [
18 { "path": "", "component": "landing" },
19 { "path": "/top", "component": "top-movies" }
20]
21 }

Figure 4-5: The configuration file of TopMovie

movies sorted by votes (Fig. 4-8). We also define a show-movie component that is

used in the top movies page to display each movie (Fig. 4-9).

For posting movie titles we use the Property concept. Property is a concept that

provides simple CRUD behavior of objects. The schema of the objects the concept

will be dealing with can be configured. In TopMovie we include Property and configure

it to save objects with a title field, which represents the movie title (Fig. 4-5, lines

7-11). In addition to Property, we include Authentication (line 14) to register users

and Scoring (line 15) for keeping track of movie votes.

The application TopMovie requires the deep integration of three separate concepts:

authentication, posting and scoring. We want the same users that post movies to be

the ones than can upvote movies, and we want to prevent a user from upvoting a movie

they posted. We achieve this by sharing identifiers and synchronizing actions. In the

submit movie form that appears on the top movies page (Fig. 4-8), we wrap with

the dv.tx tag the create-object component of Property (line 7), the create-score

45

1 @import "~@deja-vu/themes/scss/sugar.scss";
2

3 .side-by-side {
4 display: flex;
5 justify-content: space-evenly;
6 }
7 .lr-margin {
8 margin-left: 20px;
9 margin-right: 20px;

10 }
11 nav h1 {
12 text-align: center;
13 font-size: 40px;
14 }
15

16 .movie { display: flex; }
17 .movie-info { padding-top: 9px; }

Figure 4-6: The style sheet file of TopMovie

component of Scoring (line 8), and the authenticate component of Authentication

(line 10). The create-object component creates a movie object, create-score

initializes the movie score, and authenticate authenticates the logged-in user. The

Scoring concept, unless it is configured otherwise, allows a source to score a target

only once. By creating a score with the source ID set to the logged-in user (line 9)

we prevent a user from upvoting a movie they submitted.

Deeply integrating these concepts also requires creating a unified view that in-

cludes the movie title and number of points. Concept components are higher-order:

they can take components as input. It is standard convention for concept com-

ponents that may show multiple entities to have a component input to allow the

developer to customize the way each entity is shown. For example, the component

show-targets-by-score of Scoring has a showTarget input. If the developer spec-

ifies a value for showTarget, the show-targets-by-score component will use the

provided component to show each target, instead of using a default show component.

On the top movies page, we bind the showTarget input of show-targets-by-score

to the show-movie component (lines 16-17). The show-movie component (Fig. 4-9)

46

1 <dv.component name="landing">
2 <nav><h1>topmovie</h1></nav>
3 <main class="side-by-side">
4 <dv.tx>
5 <h2>login</h2>
6 <authentication.sign-in /><dv.link href="/top" hidden=true />
7 </dv.tx>
8 <dv.tx>
9 <h2>register</h2>

10 <authentication.register-user /><dv.link href="/top" hidden=true />
11 </dv.tx>
12 </main>
13 </dv.component>

Figure 4-7: The code for the landing page of TopMovie

47

1 <dv.component name="top-movies">
2 <nav><h1>topmovie</h1></nav>
3 <main class="lr-margin">
4 <authentication.logged-in />
5 <dv.tx>
6 <dv.gen-id />
7 <movie.create-object id=dv.gen-id.id buttonLabel="Submit Movie" />
8 <scoring.create-score value=0 hidden=true
9 sourceId=authentication.logged-in.user?.id targetId=dv.gen-id.id />

10 <authentication.authenticate id=authentication.logged-in.user?.id
11 hidden=true />
12 <dv.link />
13 </dv.tx>
14 <scoring.show-targets-by-score showAscending=false
15 noTargetsText="No movies yet"
16 showTarget=<topmovie.show-movie target=$target
17 user=authentication.logged-in.user /> />
18 </main>
19 </dv.component>

Figure 4-8: The code for the top movies page of TopMovie

48

1 <dv.component name="show-movie">
2 <div class="movie">
3 <dv.tx>
4 <scoring.create-score submitMatIconName="arrow_drop_up"
5 sourceId=$user.id targetId=$target.id
6 showDoneMessage=false showOptionToInputValue=false value=1 />
7 <authentication.authenticate id=$user.id hidden=true />
8 <dv.link />
9 </dv.tx>

10 <div class="movie-info">
11 <movie.show-object id=$target.id includeTimestamp=true
12 hidden=true />
13 {{movie.show-object.loadedObject?.title}}
14 | {{$target.total}} points | submitted <dv.show-date
15 date=movie.show-object.loadedObject?.timestamp format="time-ago" />
16 </div>
17 </div>

Figure 4-9: The code for the show movie component of TopMovie

loads the movie object (lines 11-12) and shows the loaded movie title (line 13). It also

shows the movie points (line 14) and lets the logged-in user upvote the movie (lines

3-9). To restrict upvoting to authenticated users only, we synchronize create-score

(line 4-6) with authenticate (line 7).

4.2.2 Discussion

The deep integration of scoring, posting, and authentication makes it hard to build

TopMovie using a content management system. We can include an upvote plug-in, but

we want the same users that upvote posts to be the ones that create posts, and we want

the post creator to not be able to upvote their own posts. In a content management

system, implementing this deep integration would typically require writing server-side

code. Since general-purpose tools and end-user development tools are more flexible,

deeply integrating scoring, posting, and authentication functionality is not a problem.

The problem is that we would need to implement most of this functionality from

scratch. Most end-user tools have some built-in authentication mechanism so, at the

very least, authentication functionality wouldn’t have to be implemented from scratch

49

in an end-user development tool, but upvoting and posting movie titles typically

would.

4.3 Implementation of Custom Behavior

4.3.1 Example Application: FamilyLog

In FamilyLog, kids can share what they are doing with their parents and siblings.

There are two kinds of users in FamilyLog: parents and children. Children can’t

create accounts directly, only parents can create accounts for their children. After a

parent creates a child account, the new child account is subsequently associated with

the parent account, and the child is added to the parent’s family. A parent can see

all log entries posted by their children. A child can log in to the application, submit

new log entries, and see all log entries submitted by them or by their siblings.

The entire code for the Déjà Vu implementation of FamilyLog is shown in Figs. 4-

10 through 4-14. The application has three web pages: a landing page (Fig. 4-12), a

parent home page (Fig. 4-13), and a child home page (Fig. 4-14). The configuration

file (Fig. 4-10) specifies the concepts we use in our application and the routes. In

FamilyLog we use Property to save log entries, Group to associate parents with their

children, and Authentication twice: once for parent accounts, and another for children

accounts.

At first, it might appear that implementing the functionality that parents create

accounts for their children would require a very advanced authentication concept, but

Déjà Vu’s composition mechanism by action synchronization and identifier sharing

allows custom behavior like this to be implemented by combining multiple instances

of the same simple authentication concept. In FamilyLog, we include two instances of

Authentication, one for dealing with parent accounts (line 18) and the other one for

children accounts (line 19). Parent accounts are registered with the register-user

component of the parent authentication instance (Fig. 4-12, line 12). In the parent

home page (Fig. 4-13), to let a parent create a child accounts, we synchronize the

50

1 {
2 "name": "familylog",
3 "usedConcepts": {
4 "entry": {
5 "name": "property",
6 "config": {
7 "schema": {
8 "title": "Entry", "type": "object",
9 "properties": {

10 "content": { "type": "string" },
11 "author": { "type": "string" },
12 "parentId": { "type": "string" }
13 },
14 "required": ["content", "author", "parentId"]
15 }
16 }
17 },
18 "parentauth": { "name": "authentication" },
19 "childauth": { "name": "authentication" },
20 "group": {}
21 },
22 "routes": [
23 { "path": "/", "component": "landing" },
24 { "path": "/parent", "component": "parent-home" },
25 { "path": "/child", "component": "child-home" }
26]
27 }

Figure 4-10: The configuration file of FamilyLog

51

1 @import "~@deja-vu/themes/scss/basil-green.scss";
2

3 .side-by-side {
4 display: flex;
5 justify-content: space-evenly;
6 }
7

8 nav h1 {
9 text-align: center;

10 font-size: 40px;
11 }
12

13 .log { width: 60%; }

Figure 4-11: The style sheet file of FamilyLog

register-user component of the child authentication instance (line 17) with the

authenticate component of the parent instance (line 15). As a result, only authen-

ticated parents can create child accounts.

To associate a parent account with its children we include Group (Fig. 4-10, line

20). Then, we wrap the register-user component for parents in a transaction with

create-group (Fig. 4-12, line 11). As a result, when a new parent account is created,

a group with the same ID as the parent account is created as well. Then, when a

new child account is created we add the new child account to the parent group using

add-to-group (Fig. 4-13, line 19).

To implement the log entry functionality we use Property. In this case, we con-

figure property to save log entries: objects with a content and an author. We also

include a parentId field to make it easy to fetch all the entries of a parent’s children

in the parent home page (Fig. 4-13, line 9) and in the child home page (Fig. 4-14,

line 12). In the child home page, to retrieve the parent associated with the logged-in

child, we find all groups that have the current logged-in child as a member (Fig. 4-

14, line 5-6). Because of the way Group is used in FamilyLog, we know that a child

can only belong to one group, which is the family group the child is part of. Thus,

show-groups will return exactly one group ID in the groupIds output, which we

access with the expression group.show-groups.groupIds[0]. We use the group ID

52

1 <dv.component name="landing">
2 <nav><h1>Family Log</h1></nav>
3 <main class="side-by-side">
4 <dv.tx>
5 <h1>Parent Login</h1>
6 <parentauth.sign-in /><dv.link href="/parent" />
7 </dv.tx>
8 <dv.tx>
9 <h1>New Parent</h1>

10 <dv.gen-id />
11 <group.create-group id=dv.gen-id.id hidden=true />
12 <parentauth.register-user id=dv.gen-id.id />
13 <dv.link href="/parent" />
14 </dv.tx>
15 <dv.tx>
16 <h1>Child Login</h1>
17 <childauth.sign-in /><dv.link href="/child" />
18 </dv.tx>
19 </main>
20 </dv.component>

Figure 4-12: The code for the landing page of FamilyLog

53

1 <dv.component name="parent-home">
2 <nav><h1>Family Log</h1></nav>
3 <parentauth.logged-in />
4 <main class="side-by-side">
5 <div class="log">
6 <h2>Log</h2>
7 <entry.show-objects showExclude=['parentId'] includeTimestamp=true
8 fieldMatching={
9 parentId: parentauth.logged-in.user?.id, waitOn: ['parentId']

10 } />
11 </div>
12 <dv.tx>
13 <h2>New Child</h2>
14 <dv.gen-id />
15 <parentauth.authenticate user=parentauth.logged-in.user
16 hidden=true />
17 <childauth.register-user id=dv.gen-id.id
18 signIn=false buttonLabel="Create Child" />
19 <group.add-to-group id=parentauth.logged-in.user?.id
20 memberId=dv.gen-id.id hidden=true />
21 </dv.tx>
22 </dv.component>

Figure 4-13: The code for the parent home page of FamilyLog

54

1 <dv.component name="child-home">
2 <nav><h1>Family Log</h1></nav>
3 <main>
4 <childauth.logged-in />
5 <group.show-groups hidden=true waitOn=['withMemberId']
6 withMemberId=childauth.logged-in.user?.id />
7 <dv.if condition=group.show-groups.groupIds class="side-by-side">
8 <div class="log">
9 <h2>Log</h2>

10 <entry.show-objects showExclude=['parentId'] includeTimestamp=true
11 fieldMatching={
12 parentId: group.show-groups.groupIds[0], waitOn: ['parentId']
13 } />
14 </div>
15 <dv.tx>
16 <h2>Create Entry</h2>
17 <entry.create-object showExclude=['author', 'parentId']
18 initialValue={
19 author: childauth.logged-in.user?.username,
20 parentId: group.show-groups.groupIds[0] } />
21 <childauth.authenticate user=childauth.logged-in.user
22 hidden=true />
23 <dv.link />
24 </dv.tx>
25 </dv.if>
26 </main>
27 </dv.component>

Figure 4-14: The code for the child home page of FamilyLog

55

as the parent ID to fetch the log entries (line 12) and to add a parent ID to new log

entries (line 20).

4.3.2 Discussion

The FamilyLog application implements custom behavior in which we have one type of

user that can create accounts for another type of user. In content management sys-

tems and end-user programming tools, implementing this behavior requires advanced

built-in authentication functionality or the existence of a plug-in that supports hav-

ing two user types in which one user type creates accounts of the other. In Déjà Vu

however, it is possible to implement the functionality by including a simple authenti-

cation concept twice and by wrapping certain actions in a transaction. This example

shows how flexible our composition mechanism can be. With our composition mech-

anism, custom behavior can be implemented without requiring the implementation

of a concept that is very specific to the application.

4.4 Benefits of Concept Modularity

To illustrate the benefits of concepts compared to conventional libraries and soft-

ware architectures, let’s consider a small example component that lets users create

posts with a rating and see what it looks like to implement the component using

conventional general-purpose tools and using Déjà Vu.

Fig. 4-15 shows submit-post written in Angular and React. For the example, we

assume that we have a post-input component that lets the user input the content

of the post, and a rating-input component that lets the user select a star rating

for the post (Fig. 4-15a, template file, lines 2-3 and Fig. 4-15b, lines 18-19). We also

assume that we have a client-side post service library for making requests (Fig. 4-15a,

component file, line 6 and Fig. 4-15b, line 12).

Fig. 4-16 shows the server-side code of submit-post. We consider two variants

for the server-side code: as a monolith and using microservices. We assume that

the server will process client requests and invoke the savePost server-side function

56

1 <form (ngSubmit)="submitPost()">
2 <app-post-input [ngModel]="p"></app-post-input>
3 <app-rating-input [ngModel]="r"></app-rating-input>
4 <button type="submit">Submit</button>
5 </form>

1 @Component({ selector: 'app-submit-post', ... })
2 export class SubmitPostComponent {
3 p: Post; r: number;
4 constructor(private postService: PostService) {}
5 submitPost() {
6 this.postService.savePost(this.p, this.r);
7 }
8 }

(a) submit-post component in Angular

1 class SubmitPost extends React.Component {
2 constructor(props) {
3 super(props);
4 this.state = { p: new Post(), r: 0 };
5 this.handleChange = this.handleChange.bind(this);
6 this.handleSubmit = this.handleSubmit.bind(this);
7 }
8 handleChange(e) {
9 this.setState({ [e.target.name]: e.target.value });

10 }
11 handleSubmit(e) {
12 PostService.savePost(this.state.p, this.state.r);
13 e.preventDefault();
14 }
15 render() {
16 return (
17 <form onSubmit={this.handleSubmit}>
18 <PostInput onChange={this.handleChange} />
19 <RatingInput onChange={this.handleChange} />
20 <button type="submit">Submit</button>
21 </form>
22);
23 }
24 }

(b) submit-post component in React

Figure 4-15: Two client-side code variants for submit-post: using Angular and React

57

1 function savePost(p: Post, r: number) {
2 if (Post.isValid(p) && Rating.isValid(r)) {
3 db.save(p);
4 }
5 }

(a) Server Monolith

1 function savePost(p: Post, r: number) {
2 if (PostService.isValid(p) &&
3 RatingService.isValid(r)) {
4 const newP = PostService.newPost(p);
5 RatingService.newRating(newP.id, r);
6 }
7 }

(b) Server using Microservices

Figure 4-16: Two server-side code variants for submit-post: using a monolithic
architecture and microservices

1 <dv.component name="submit-post">
2 <dv.tx>
3 <dv.gen-id />
4 <property.create-object id=dv.gen-id.id />
5 <rating.rate-target targetId=dv.gen-id.id />
6 <dv.button>Submit</dv.button>
7 </dv.tx>
8 </dv.component>

Figure 4-17: submit-post component in Déjà Vu

58

with the correct inputs (Fig. 4-16a or Fig. 4-16b, line 1). In the monolithic back-end

(Fig. 4-16a), we assume there are libraries for validating posts, ratings, and accessing

the database. In the microservices back-end (Fig. 4-16b), we assume there are post

and rating services.

Note that, even if we assume that all the post and rating functionality is readily

available, there’s still a lot of code that we need to write to put everything together.

With a standard approach, we have to:

• Subscribe to events and write event handlers. In Angular, we subscribe to the

ngSubmit event generated by the form so as to invoke the onSubmit method

of the component whenever the form gets submitted (Fig. 4-15a, template file,

line 1). In React, we subscribe to the onChange event generated by the post

and rating components (Fig. 4-15b, lines 18-19) and to the onSubmit event of

the form (Fig. 4-15b, line 17).

• Aggregate data for the request. In Angular, the event handler for submit events,

submitPost(), has to aggregate data of post-input and rating-input to build

the server request. In React, the event handler for onChange events updates the

component state, which is then read by the event handler for submit events to

build the server request. In both cases, the request is sent by the post service

when we invoke its savePost method.

• Handle client-server communication. While we are assuming that there exists a

client-side post service to issue requests, certain modifications would normally

require the modification of the server API and of the client service. For example,

adding a location to the post might require adding a new parameter to savePost

and a new parameter to the server API so that it expects a location value.

• Combine server-side functionality. Even if the server-side functionality of post-

ing and rating exists, we still have to, in the case of the monolith, make the ap-

propriate function calls to validate the request and save the post to the database.

Also, in the server using microservices, we still have to make the appropriate

59

calls to the post and rating services. Moreover, integrating microservices could,

in some cases, require more complex code, since one might have to implement

transactions.

On the other hand, when using Déjà Vu, none of this is necessary. Fig. 4-17 shows

the implementation of submit-post using Déjà Vu, where we assume that we have

the Property and Rating concepts. In Déjà Vu, wrapping a component in a dv.tx

automatically subscribes to run events, runs the event handlers, aggregates the data

client-side and sends the request, unpacks the request server-side, and coordinates

the calls to the back-end services of each concept so they happen in a transaction if

necessary. All of this functionality is hidden from the developer, who doesn’t need

to write JavaScript code to handle events or combine server-side microservices for

example. Of course one could build a set of libraries that would alleviate the amount

of integration code required when using a standard approach, but that would amount

to almost replicating Déjà Vu’s runtime system and our concept modularity.

4.5 Summary

Through three small example applications, SecretParty, TopMovie, and FamilyLog,

we have shown how it is possible to use Déjà Vu to build applications with rich

graphical user interfaces and complex behavior. Since concepts implement full-stack

end-user behavior, it is possible to quickly add new functionality to an application

by including a concept. Including a concept only requires writing a little JSON

and some HTML to include concept components. Déjà Vu’s composition mechanism

allows the developer to deeply integrate different end-user functionality, by sharing

identifiers and synchronizing actions in HTML, without writing any server-side code

or JavaScript code. The composition mechanism is flexible enough that implementing

behavior that might, at first, seem like it would require a very application-specific

concept, can often be implemented by combining existing concepts.

Also, we have shown how our concept modularity provides benefits compared to

conventional libraries and software architectures by abstracting away complicated

60

client-server integration code, such as subscribing to client-side events, preparing

requests, and combining server-side functionality.

In the next chapter, we are going to explain in detail how to build applications

using Déjà Vu with a longer example application.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

Chapter 5

Building Applications with Déjà Vu

To see what using Déjà Vu is like, let’s consider building an application called Slacker

News (SN). Slacker News is a simple clone of Hacker News1, a popular social news

aggregation website. In Slacker News, registered users can post links, comment on

posts, and upvote posts or comments. Posts with the most upvotes appear towards the

top of the home page. Figs. 5-1 through 5-4 show screenshots of what the application

Slacker News looks like.

To build an application with Déjà Vu, you include and configure concepts (§5.1)

and create application components by linking components (§5.2). To implement a

reactive user interface, you use the same synchronization mechanism used for com-

posing concept behavior (§5.3). The security policy of the application is specified

implicitly in the component code and application configuration (§5.4). To customize

the appearance of the application, you write CSS or SASS code (§5.5). Finally, while

it not necessary to modify a concept implementation to build Slacker News, we con-

clude the chapter with an overview on how you can create a new concept or customize

a concept implementation in Déjà Vu if you have to (§5.6).

63

Figure 5-1: Screenshot of the register user page of Slacker News

Figure 5-2: Screenshot of the submit post page of Slacker News

64

Figure 5-3: Screenshot of the home page of Slacker News

Figure 5-4: Screenshot of the post detail page of Slacker News

65

(a) create-score with targetId in-
put “ben” and sourceId “alyssa”

(b) show-target with id input “ben” showing the
score created in Fig. 5-5a and ben’s total score

Figure 5-5: Screenshots of two components of Scoring

5.1 Including and Configuring Concepts

5.1.1 Choosing Concepts

The process of building a Déjà Vu application begins by navigating the catalog of

concepts to find the concepts that provide the functionality you need for your appli-

cation. The concepts in our catalog and their purposes are shown in Table 5.1. The

documentation accompanying a concept includes information about the configuration

options and the exported components. Fig. 5-5 shows some components of Scoring.

Concept components control a patch of the screen, are interactive, and can read and

write back-end data. They also have input and output properties.

Slacker News uses Authentication to handle user authentication, Comment to com-

ment on posts and reply to comments, and Scoring twice: for keeping track of upvotes

on both posts and on comments separately. It also uses Property, which, as we’ve

seen in Chapter 4, provides a data-model-defining facility for simple CRUD behavior.

In Slacker News, we use Property to save a post’s author, title, and URL.

5.1.2 Including Concepts

The concepts used by the application—Authentication, Comment, Property, and Scor-

ing twice—are specified in the application’s JSON configuration file (Fig. 5-6, lines

3-22). The usedConcepts object has one key-value pair per concept instance. The

1https://news.ycombinator.com/

66

https://news.ycombinator.com/

1 {
2 "name": "sn",
3 "usedConcepts": {
4 "authentication": {},
5 "comment": {},
6 "post": {
7 "name": "Property",
8 "config": {
9 "schema": {

10 "title": "Post", "type": "object",
11 "properties": {
12 "author": { "type": "string" },
13 "title": { "type": "string" },
14 "url": { "type": "string", "format": "url" }
15 },
16 "required": ["author", "title", "url"]
17 }
18 }
19 },
20 "scoreposts": { "name": "Scoring" },
21 "scorecomments": { "name": "Scoring" }
22 },
23 "routes": [
24 { "path": "", "component": "home" },
25 { "path": "/login", "component": "login" },
26 { "path": "/post", "component": "show-post-details" },
27 { "path": "/comment", "component": "show-comment-details" },
28 { "path": "/new", "component": "new" }
29]
30 }

Figure 5-6: The configuration file of Slacker News

67

Table 5.1: Concept catalog

Concept Purpose

Authentication Verify a user’s identity with a username and password
Authorization Control access to resources
Chat Exchange messages in real time
Comment Share reactions to items
Event Schedule events
Follow Receive updates from sources
Geolocation Locate points of interest
Group Organize members into groups so that they can be handled in

aggregate
Label Label items so that they can be found later
Match Connect users after they both agree
Passkey Verify a user’s identity with a code
Property Describe an object with properties that have values
Ranking Rank items
Rating Crowdsource evaluation of items
Schedule Find a time to meet
Scoring Keep track of scores
Task Keep track of pieces of work to be done
Transfer Transfer money or items between accounts

key (e.g., “post” on line 6) determines the name that is going to be used in the HTML

to refer to that instance. The value is another object with two optional key-value

pairs: name for providing the name of the concept to be instantiated (e.g., “Property”

on line 7), and config for specifying the configuring options for the concept instance

(e.g., the object in lines 8-18). If no concept name is provided, the concept instanti-

ated is the one with name equal to the instance name. Thus, for example, the concept

to be instantiated for “authentication” is Authentication (line 4). If no configuration

object is given, the default configuration for that concept is used. The format of the

values of configuration options is also JSON.

5.1.3 Configuring Concepts

In Slacker News, we only have to configure Property. Property accepts a configuration

variable schema that expects a JSON Schema2 to describe the objects it will be saving.
2https://json-schema.org/

68

https://json-schema.org/

We use schema to specify the type of properties we expect our objects to have. In

Slacker News, our objects are “posts” (line 10), and we expect them to have an

author, title, and a URL (lines 11-15). The effect of configuring Property like we do

in the configuration file, is that when we include a component from Property, such

as create-object, the component will allow the user to input only those fields—

author, title, and URL. Moreover, since we specified that the format of the URL field

is url (line 14) and that the fields author, title, and URL are required (line 16),

create-object will expect the end-user to provide a value for each field and check

that the value given for the URL field is a valid URL. If the end-user doesn’t provide

a value for each field, or if the URL value given is invalid, create-object will show

an error message.

5.1.4 Other Application Configuration

In the configuration file of the application, we also define the name (Fig. 5-6, line

2) and routes (lines 23-29) of our application. Each route maps a URL path to a

component. A component that is accessible via URL is a page. Slacker News’s home

page is the component home (line 24) because path is empty. If the user navigates to

/login, the login component will be shown (line 25), if the user navigates to /post,

the show-post-details component will be shown (line 26), and so on.

5.2 Linking Components

Each application component is written in a separate HTML file. Fig. 5-7 shows an

excerpt of the code for Slacker News’s submit-post component and Fig. 5-8 shows

an excerpt of the code for Slacker News’s show-post component. The full code for

the application is available online3. We also include, in each figure, a screenshot of

how the component appears to end-users of the application.

3https://github.com/spderosso/deja-vu/tree/master/samples/sn

69

https://github.com/spderosso/deja-vu/tree/master/samples/sn

1 <dv.component name="submit-post">
2 <sn.navbar /> ...
3 <dv.tx>
4 <dv.gen-id />
5 <authentication.authenticate
6 username=sn.navbar.user.username hidden=true />
7 <post.create-object id=dv.gen-id.id
8 initialValue={ author: sn.navbar.user.username }
9 showExclude=["author"] buttonLabel="Submit"

10 newObjectSavedText="Post submitted" />
11 <scoreposts.create-score targetId=dv.gen-id.id
12 sourceId=sn.navbar.user.username value=0 hidden=true />
13 <dv.link href="/post" params={ id: dv.gen-id.id } hidden=true />
14 </dv.tx> ...
15 </dv.component>

Figure 5-7: Excerpt of Slacker News’s submit-post component

70

1 <dv.component name="show-post"> ...
2 <post.show-object id=$id hidden=true /> ...
3 <dv.if condition=post.show-object.loadedObject>
4 <sn.upvote id=$id user=$user />
5
6 {{post.show-object.loadedObject.title}}
7 ...
8 (<post.show-url showBaseUrlOnly=true
9 url=post.show-object.loadeObject.url />)

10 posted by {{post.show-object.loadedObject.author}}
11 <dv.show-date format='time-ago'
12 date=post.show-object.loadedObject.timestamp /> ...
13 <scoreposts.show-target
14 id=$id showId=false showScores=false totalLabel="" /> points
15 <dv.link href="/post" params={ id: $id }>comments</dv.link>
16 </dv.if>
17 </dv.component>

Figure 5-8: Excerpt of Slacker News’s show-post component

71

Our template language looks, by design, similar to other template languages.

To create an application component, a developer includes components (§5.2.1) and

synchronizes components to implement the desired functionality (§5.2.2).

5.2.1 Including Components

Including Components

An application component can contain other components, which can be concept com-

ponents or application components. A concept component is a component that is

defined and exported by a concept. An application component, on the other hand, is

defined by the application developer and it is part of the application being developed.

Components are included as if they were HTML elements, with the tag given by

the concept instance or application name, followed by the component name. Thus,

submit-post (Fig. 5-7) includes one application component, navbar (line 2); three

concept components, authenticate of Authentication (lines 5-6), create-object of

the post instance of Property (lines 7-10), and create-score of the scoreposts in-

stance of Scoring (lines 11-13); and two built-in components, dv.gen-id (line 4) and

dv.link (line 13).

Input/Output Binding

Inputs to a component are bound with the syntax property=expr. Template expres-

sions can include literal values, application component inputs, outputs from included

components, and standard operators. No cycles in the bindings are allowed. The

syntax of template expressions is similar to that of JavaScript expressions, but no

function calls or JavaScript operators that produce side-effects are allowed.

Components can be fired repeatedly, and the output properties hold the values

from the last execution. This is how a selector widget such as a dropdown would

typically be connected to another component: the dropdown sets an output property

every time it is activated containing the choice the user made, which is then bound

to the input property of components that use that choice.

72

Some input properties are for customizing appearance and have no impact on

the behavior of the component. For example, as a result of setting buttonLabel to

"Submit" (Fig. 5-7, line 9), create-object’s button will carry the label “Submit” in-

stead of the default button label “Create Post”. The hidden property of show-object

(Fig. 5-8, line 2) indicates that the component should be activated but not visible.

Thus the object data itself is still loaded, emitted as an output, and used in several

parts of the view—the title and the URL are used and shown through lines 5-9, the

author is shown on line 10, and the object creation timestamp is shown on line 11-12.

Application components can have their own input properties. Any name used in

an expression that is prefixed with $ is considered to be an input property of the

application component. For example, show-post (Fig. 5-8) has an input named id

that it uses in lines 2, 4, 14, and 15. Based on this input, show-object will show

the post whose ID matches the given one; upvote will use the ID as the target of

the score if one is created; show-target will show the score with the given ID; and

clicking on the “comments” link will take the user to show-post-details with its

input id set to the given ID.

To display how long ago the post was created in show-post, we bind the date

input property of show-date to the object creation timestamp (line 12) and set its

format input property to “time-ago” (line 11). All objects from Property have a

timestamp field that stores the object’s creation date.

Identifier Sharing

To bind entities in different concepts we use a common identifier. In submit-post

(Fig. 5-7), for example, the same ID, generated by gen-id (line 4), is passed to

create-object (line 7), create-score (line 11), and dv.link (line 13). As a result,

create-score will create a score with the same target ID as the object created

by create-object, and dv.link will cause a redirect to the “/post” page with its

id input set to the new post ID after the post submission succeeds. Similarly, in

show-post (Fig. 5-8), we feed the id input to show-object (line 2) and show-target

73

(line 14). Each of these components loads and displays its own view of the post entity;

the effect when put together is to display a Slacker News post object.

5.2.2 Synchronizing Components

Action Types

Concept components have at most two server-side actions: an evaluation action (eval)

and an execution action (exec). The concept author determines what triggers the eval-

uation or execution of the component. Typically, the loading of the component into

the user’s web browser triggers the evaluation of a component, and some user inter-

action, such as a button click, triggers its execution. What happens on eval or exec is

also up to the author of the concept—the only restriction is that an eval action can-

not produce a side effect on the server state. Note that application components don’t

have actions. This is because application components have no back-end functionality

of their own—all data and behavior is pushed to concepts.

Eval/exec actions support the conventional user interaction pattern of web appli-

cations: data is loaded and displayed, and then the user executes commands to mutate

the data. It would be possible for concept components to offer arbitrary action types

to support more complex forms of behavior. But this would require more work from

the user, who would now have to specify what action types are to be coordinated.

Synchronizing Actions

There are two kinds of application components: a regular component and a trans-

action (tx) component. A regular component allows any of its children components

to eval/exec without synchronization. A transaction component, on the other hand,

synchronizes the actions of the concept components it wraps, so that an exec in one

happens with the exec of the other(s)—and similarly for eval actions. Synchronized

actions either complete in their entirety if all succeed, or have no effect whatsoever

other than optionally displaying an error if one or more action aborts. Instead of

putting each component in separate HTML files, you can wrap elements in another

74

1 <dv.component name="upvote"> ...
2 <dv.tx>
3 <authentication.authenticate
4 username=$user.username hidden=true />
5 <scoringposts.create-score
6 value=1 sourceId=$user.username targetId=$id ... />
7 <dv.link hidden=true />
8 </dv.tx> ...
9 </dv.component>

Figure 5-9: Excerpt of Slacker News’s upvote component

component with the dv.tx tag to create an anonymous transaction component with

content equal to the content of the tag.

In Slacker News’s submit-post, the transaction is triggered by create-object

(Fig. 5-7, line 7) when the user clicks on the “Submit” button. This is because the

button in the create-object component of Property causes the component to execute

on click, and since create-object is wrapped in a dv.tx, it will trigger the execution

of all its sibling concept components. As a result, a new post and a new score will be

created, bound by the shared ID. The inclusion of authenticate in the transaction

prevents an unauthenticated user from creating a post. The inclusion of dv.link in

the transaction causes a redirect after the transaction succeeds.

5.3 Building Reactive User Interfaces

Typical modern web applications react immediately to user interactions, without

requiring the user to refresh the web page. For example, on the Twitter home page

there’s a form to submit a tweet above your feed. If you submit a tweet, the feed

refreshes automatically to show your new tweet.

To build reactive user interfaces such as the Twitter interface in Déjà Vu, a devel-

oper uses the dv.link component and transactions. For example, in the home page

of Slacker News (Fig. 5-3), we want to automatically refresh the list of posts after

the end-user upvotes a post. Fig. 5-9 shows how we implement this reactive behavior

75

in the upvote component of Slacker News. In the upvote transaction, we include a

hidden dv.link (line 7) with no href value. The effect of doing so is that dv.link

will cause a redirect after the transaction succeeds and create-score records the new

vote. Since no href value is provided to dv.link, the dv.link component refreshes

the current page. Déjà Vu applications are single-page applications that dynami-

cally rewrite the current page, rather than loading entire new pages from the server.

Therefore, the refresh caused by dv.link doesn’t trigger a full-reload of the page, but

instead prompts components in the page to re-fetch data from the server and update

the graphical user interface to reflect the new data.

Some modern user interfaces not only refresh after a user interaction but can also

refresh after a server-side event happens, such as a data update produced by another

user. The canonical example of this behavior is chat functionality. In a chat room, as

soon as a new message is posted to the chat room by another user, the current page

refreshes to show the new message.

In Déjà Vu, the components of the Chat concept automatically refresh themselves

when server data changes. The developer doesn’t have to do anything other than in-

clude a chat component as it would include any other component. As of this writing,

only Chat includes components that automatically refresh when server data changes,

but we expect all concept components to eventually support automatic refreshing.

Our platform already has the necessary infrastructure for concept authors to imple-

ment components that can react to server-side events.

5.4 Specifying Security Policies

In Déjà Vu, a security policy is specified implicitly through: (1) which concepts

are included and how they are configured; (2) which components from the included

concepts are used; and (3) how concept components are bound to other concept

components in transaction components.

For example, to implement the policy that posts must have a title, we say that the

title field is required in the configuration of Property (Fig. 5-6, line 16). The server

76

of Property will enforce this constraint, and return an error if no title is given when

a new object is created. Other constraints, such as the constraint that posts cannot

be deleted, are enforced by the omission of certain components. In this case, the

delete-object component that lets end-users delete Property objects is not included

in the application. Finally, Fig. 5-9 shows how we use transaction components to

implement the policy that only authenticated users can upvote posts. In Slacker

News’s upvote component, we wrap the creation of a new score in a transaction

component with the authenticate component of Authentication. The authenticate

component checks that the logged-in user matches the given username. If it doesn’t,

it returns an error. The error causes the transaction to abort and, as a result, it causes

the upvote of a post to abort. Since there’s no other component in the application that

would let a user upvote a post, only authenticated users can upvote a post. We also

use authenticate in submit-post (Fig. 5-7, lines 5-6) to prevent unauthenticated

users from creating new posts.

Note that policies are expressed in HTML and JSON, but, as we’ll see later in

Chapter 7, are actually enforced server-side by the platform’s runtime system and

concept servers.

5.5 Styling the Application

The appearance of a Déjà Vu application can be customized using CSS or SASS.

A developer can define a global style sheet file. The rules in the global style sheet

apply to all components of the application. A developer can also provide a style sheet

for each individual component that applies only to that component.

While concept components come with some default styling, they also export a set

of CSS classes for developers to overwrite the default style. A developer can refer

to these CSS classes in the global style file to style HTML elements inside concept

components. The CSS classes exported by concept components are named using the

convention conceptname-componentname-element. For example, in Slacker News’s

global style file, we write a rule to match the username element of the show-user

77

1 $navbarButtonPadding: 0 5px;
2

3 @import "~@deja-vu/themes/scss/orange-and-black.scss";
4

5 .authentication-show-user-username {
6 display: inline;
7 }
8 ...
9 .sep {

10 border-left: 1px solid gray;
11 width: 1px;
12 height: 12px;
13 margin-top: 3px;
14 margin-left: 4px;
15 margin-right: 4px;
16 }
17 ...

Figure 5-10: Excerpt of Slacker News’s global style sheet file

component of authentication and have it display inline (Fig. 5-10, lines 5-7). This

rule applies globally to all username elements of any show-user component on the

application. If we include show-user more than once in the application and we

would like to style each component instance differently, we can use CSS to distinguish

between the different component instances and style them differently. For example,

let’s say we have an application with two instances of show-user that we want to

style differently, one in the navbar and another in the profile page. We can add a

CSS class show-user-nav to the show-user element in the navbar and a CSS class

show-user-profile to the show-user element in the profile page. Then, in the

global style file, we create two rules: one that matches the username element that is

a descendant of the show-user element with class show-user-nav and the other rule

that matches the username element that is a descendant of the show-user element

with class show-user-profile.

A developer can, of course, also style HTML elements that appear in application

components. For example, in Slacker News’s global style sheet (Fig. 5-10) we match

HTML elements with the class sep to give it a left border, a certain width, height

78

and margin (lines 9-16). We use sep in Slacker News to create the vertical bars that

separate post information such as the date and author in, for example, show-post

(Fig. 5-8).

5.5.1 Themes

To make it easier for developers to quickly style an application, our platform includes

a set of themes. The themes style HTML elements such as <nav>, <main>, and <p>.

Themes export set of variables that the developer can override. For example, in

Slacker News we use the orange and black theme (Fig. 5-10, line 3), but we override

the default value for the $navbarButtonPadding to be 0 5px (line 1).

5.6 Customizing a Concept Implementation

For building Slacker News we assumed that all the functionality we required was

already there in the catalog. But what is the procedure if, for example, there’s a

concept you need that is not in the catalog, or if you need a new component that is

not present in a concept?

To implement or modify a concept you use general-purpose tools. In particular,

you use the Angular front-end web framework, and the TypeScript language for both

client- and server-side programming. All our concepts are open-source and the concept

code can be modified and repackaged for use in an application.

Creating or modifying a concept is no different than creating or modifying the

code for a regular web application built with modern web frameworks and tools. To

create a concept component you create an Angular component, which consists of an

HTML template, CSS, and an associated TypeScript class. In the TypeScript class,

you import a Déjà Vu library to subscribe to eval/exec events and to run the server-

side action of the component. To create a server-side action you modify a server

file.

To make it easy to author concepts our platform includes several libraries for im-

plementing transactions and processing client-side requests. We also have a command-

79

line interface tool for scaffolding concept implementations. At this point however, our

concepts abstractions are completely opaque and we have no platform mechanism that

allows a developer to easily override the behavior of a concept without having to read

and modify concept code. In Chapter 10, we discuss potential improvements to our

platform to make it easier for a developer to build and modify concepts.

5.7 Summary

To build applications with Déjà Vu a developer navigates the concept catalog to

find the functionality they need, writes a JSON configuration file to configure and

include concepts, and writes an HTML file for each application component. In each

HTML file, the developer can include concept or application components, bind their

inputs/outputs together, and specify whether the server-side actions of the included

concept components should be synchronized or not. To style the application, the

developer writes CSS or SASS, and can use one of our built-in themes.

In the next chapter, we give a formal semantics to Déjà Vu to better understand

and communicate the behavior of Déjà Vu applications.

80

Chapter 6

Platform Semantics

In this chapter, we give a formal semantics to Déjà Vu. The purpose of giving a

formal semantics to Déjà Vu is to build a mathematical model that can serve as a

basis for understanding and reasoning about the behavior of a Déjà Vu application.

We give a formal semantics to Déjà Vu to communicate, precisely, the behavior of a

Déjà Vu application.

Two main approaches for specifying a formal semantics are operational and de-

notational semantics. An operational semantics describes the meaning of a language

by specifying how it executes on an abstract machine. A denotational semantics, on

the other hand, describes the meaning of a language by constructing mathematical

objects that represent what the program does and translating the language to these

objects.

The operational and denotational style are not in opposition to each other and

combining them can be beneficial. In our formal semantics of Déjà Vu, we combine

both approaches. We define a set of mathematical objects that correspond to relevant

notions in Déjà Vu, such as components, concept server states, applications, and so

on, and use operational semantics to describe the meaning of a Déjà Vu application

as a set of computational steps that a Déjà Vu application can perform. Then, in

a denotational style, we translate a core Déjà Vu syntax to the set of mathematical

objects we defined previously. This separation allows us to use high-level mathemat-

81

ical objects to understand the computational behavior of a Déjà Vu application and

abstract away compilation details.

6.1 Introduction

To give an operational semantics to Déjà Vu we use the framework of structural

operational semantics [52]. The structural operational semantics of Déjà Vu defines

transitions between configurations. A configuration represents the state of execution

of an application instance at a given moment. The semantics of an instance of a

Déjà Vu application is a set of finite but unbounded sequences of transitions between

application instance configurations. We say the transition sequence is finite but un-

bounded because a deployed Déjà Vu application runs until it is terminated by the

developer—a Déjà Vu application won’t terminate by itself after a series of steps.

To define the set of possible transitions we define a transition relation. We specify

the transition relation using inference rules that define the transition of an application

instance configuration in terms of the transition of its parts: clients, components, and

concept server states.

We are going to explain the semantics incrementally. On each iteration, we refine

the definition and rules introduced in the previous iteration of the semantics and add

new definitions and rules. The first iteration of the semantics is concerned only with

components that can propagate input/output changes through the property bindings

and read/write concept state (§6.2). The second iteration adds support for multiple

clients (§6.3). In the third and last iteration, we add action synchronization to give

the full semantics of Déjà Vu (§6.4). We then present a core syntax of Déjà Vu and

its translation to the semantic elements used in the operational semantics (§6.5), and

conclude the chapter with a discussion on minor features of Déjà Vu that we chose

to omit from the formal semantics (§6.6).

82

6.2 First Iteration: Components

In the first iteration of the semantics, we are concerned only with components and the

global server state of an application instance. We begin by defining property bindings,

component configurations, and application instance configurations (§6.2.1). We then

specify the behavior of concept components (§6.2.2), give the inference rule that

determines the behavior of an application instance configuration (§6.2.3), and discuss

how the initial application instance configuration of an application is determined

(§6.2.4).

6.2.1 Definitions

We start by defining the following sets:

• 𝒯 , 𝒩 , and 𝒫 are the set of concept names, component names, and property

names respectively. Input, output, and private properties are properties with

names in 𝒫𝑖𝑛, 𝒫𝑜𝑢𝑡, and 𝒫𝑝𝑟𝑖𝑣𝑎𝑡𝑒 respectively. Each property name is an input,

output, or private property name. That is, 𝒫 = 𝒫𝑖𝑛 ∪̇ 𝒫𝑜𝑢𝑡 ∪̇ 𝒫𝑝𝑟𝑖𝑣𝑎𝑡𝑒. We use

𝐴 ∪̇𝐵 to denote the union of disjoint sets 𝐴 and 𝐵 (𝐴 ∩𝐵 = ∅).

• The set 𝒱 is the set of property values and includes numbers, booleans, strings,

records, arrays, components, and ⊥, which denotes the absence of value.

• 𝒮 is the set of concept server states.

• ℐ ⊆ (𝒯 × 𝒩) ∪ 𝒩 is the set of component identifiers, which can be concept

and component name pairs that identify a concept component, or a component

name that identifies an application component. We use 𝑐.𝑛 to denote a pair of

concept name 𝑐 ∈ 𝒯 and component name 𝑛 ∈ 𝒩 .

• C is the set of component instance configurations. We use AC and CC to

refer to the set of application and concept component instance configurations

respectively (C = AC ∪̇CC).

• B is the set of property bindings.

83

• A is the set of application instance configurations.

We define property bindings, component instance configurations, and application

instance configurations below.

Property Binding

A property binding binds an input property to an expression. Since the expression

language and its evaluation is not an essential aspect of the semantics of Déjà Vu,

we assume the existence of an expression syntax ℰ that ranges over a set of property

names 𝒫 , and an evaluation function [[𝑒]]Γ that can evaluate an expression 𝑒 ∈ ℰ under

a context Γ and return a value 𝑣 ∈ 𝒱 . The context Γ : 𝒫 ↦→ 𝒱 is a partial function

mapping property names to values.

Definition 6.2.1. A property binding 𝑝 ← 𝑒 binds an input property 𝑝 ∈ 𝒫 to an

expression 𝑒 ∈ ℰ . The expression 𝑒 is an expression over a set of property names

𝑃𝑒 ⊆ 𝒫 .

Example. A property binding post.create.id← dv.gen-id.id binds the value of

the post.create.id input property to the value of the output property dv.gen-id.id

(post.create.id ∈ 𝒫𝑖𝑛, dv.gen-id.id ∈ 𝒫𝑜𝑢𝑡). For simplicity, the structure in

property names is not represented in the semantics. The implication of this bind-

ing is that when the value of dv.gen-id.id changes, the value of post.create.id

is updated as well. How this happens is explained later.

Component Instance Configuration

Definition 6.2.2. A component instance configuration is a tuple ≺ 𝜎, 𝒞, 𝐵, 𝜄 ≻∈ C,

where:

• 𝜎 is the local state of the component instance. We model the local state as a

partial function 𝜎 : 𝒫 ↦→ 𝒱 , mapping property names to values. The local state

of the component instance consists of input and output properties and, in the

case of concept components, it may include private properties as well.

84

• 𝒞 ⊆ C is the set of children components of the component.

• 𝐵 ⊆ B is a set of property bindings.

• 𝜄 ∈ ℐ is the component identifier. An application component instance config-

uration 𝑐 ∈ AC is a component instance configuration with 𝜄 ∈ 𝒩 . A concept

component instance configuration 𝑐 ∈ CC is a component instance configuration

with 𝜄 ∈ 𝒯 ×𝒩 .

The bindings of a component instance configuration must satisfy the following prop-

erties, which prevent cycles in property bindings and prevent a component binding

from accessing a property that is out of the component scope:

• All input property binding expressions in 𝐵 must range over a set of output

properties of child component instance configurations and input properties of

the component instance configuration. Formally, if 𝒞 = {≺ 𝜎1, 𝒞1, 𝐵1, 𝜄1 ≻

, . . . ,≺ 𝜎𝑛, 𝒞𝑛, 𝐵𝑛, 𝜄𝑛 ≻} and 𝒫𝑒 is the set of property names an expression 𝑒

refers to, then ∀ 𝑝← 𝑒 ∈ 𝐵, we have

𝑝 ∈ 𝒫𝑖𝑛 ∩ (dom𝜎1 ∪̇ . . . ∪̇ dom𝜎𝑛) =⇒

𝒫𝑒 ⊆ (𝒫𝑜𝑢𝑡 ∩ (dom𝜎1 ∪̇ . . . ∪̇ dom𝜎𝑛)) ∪ (𝒫𝑖𝑛 ∩ dom𝜎)

• All output property binding expressions in 𝐵 are over a set of output properties

of child component instance configurations. Formally, if 𝒞 = {≺ 𝜎1, 𝒞1, 𝐵1, 𝜄1 ≻

, . . . ,≺ 𝜎𝑛, 𝒞𝑛, 𝐵𝑛, 𝜄𝑛 ≻} and 𝒫𝑒 is the set of property names an expression 𝑒

refers to, then ∀ 𝑝← 𝑒 ∈ 𝐵, we have

𝑝 ∈ 𝒫𝑜𝑢𝑡 ∩ dom𝜎 =⇒ 𝒫𝑒 ⊆ 𝒫𝑜𝑢𝑡 ∩ (dom𝜎1 ∪̇ . . . ∪̇ dom𝜎𝑛)

Also, application component configurations cannot have private properties:

𝜄 ∈ 𝒩 =⇒ 𝒫𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ∩ dom𝜎 = ∅

85

Example. A component instance configuration

≺ ∅,⎧⎨⎩ ≺ {dv.gen-id.id ↦→ 8afc}, ∅, ∅, dv.gen-id ≻

≺ {post.create.id ↦→ 8afc}, ∅, ∅, post.create ≻

⎫⎬⎭ ,

{post.create.id← dv.gen-id.id},

submit ≻

(6.1)

represents the state of an application component instance of ID submit with no

input or output properties, a child component create of the post concept and a

child component gen-id of dv, and a binding that binds the id input of create to

the id output of gen-id. Both dv.gen-id and post.create have an id input set

to value 8afc and have no bindings or children.

Application Instance Configuration

Definition 6.2.3. An application instance configuration is a tuple 𝑐; Σ ∈ A, where:

• 𝑐 ∈ C is a component instance configuration. The component instance config-

uration 𝑐 represents the component currently executing on the client. On the

first iteration of the semantics, we only allow one client.

• Σ is the server state of the application. We model the server state Σ as a partial

function Σ : 𝒯 ↦→ 𝒮 mapping concept names to concept server states.

Example. A state

Σ =

⎧⎨⎩ post ↦→ {posts ↦→ {(id :8afc, content : ”hello”)}

dv ↦→ ∅

⎫⎬⎭ (6.2)

represents the server state of an application, where the server state for the con-

cept post has a posts property with a singleton value containing a post record

(id :8afc, content : ”hello”), and the server state for dv is empty.

86

An application instance configuration 𝑐; Σ, where 𝑐 is equal to the component

instance configuration of (6.1) and Σ is equal to the concept server state defined

in (6.2), represents an application instance configuration with component instance

configuration 𝑐 and a global application state Σ. The server state that the child

concept component post.create of 𝑐 can read/write is Σ(post), and the server

state the child concept component dv.gen-id of 𝑐 can read/write is Σ(dv).

Update Function

We define a function update that propagates data updates across the component tree

according to the bindings. The function updates the input properties of components

in the tree by re-evaluating the bindings under the component context. It is defined

as follows:

update(≺ 𝜎, {≺ 𝜎1, 𝒞1, 𝐵1, 𝜄1 ≻, . . . ,≺ 𝜎𝑛, 𝒞𝑛, 𝐵𝑛, 𝜄𝑛 ≻}, 𝐵, 𝜄 ≻) =

let𝑉 = [[𝐵]]𝜎 ∪̇𝜎𝑖 ∪̇ ... ∪̇𝜎𝑛
in

≺ 𝜎 ⊗ 𝑉,

{update(≺ 𝜎1 ⊗ 𝑉, 𝒞1, 𝐵1, 𝜄1 ≻), . . . , update(≺ 𝜎𝑛 ⊗ 𝑉, 𝒞𝑛, 𝐵𝑛, 𝜄𝑛 ≻)},

𝐵, 𝜄 ≻

The store update operator ⊗ updates the property values in the first store with

the values in the second store:

(𝑓 ⊗ 𝑔)(𝑥) =

⎧⎪⎨⎪⎩𝑓(𝑥) if𝑥 ∈ dom 𝑓 ∧ 𝑥 /∈ dom 𝑔

𝑔(𝑥) if𝑥 ∈ dom 𝑓 ∧ 𝑥 ∈ dom 𝑔

The update function takes a component instance configuration and recursively

updates all the input properties of the component children. It updates all the in-

put properties by updating the property values with the values in the map 𝑉 =

[[𝐵]]𝜎 ∪̇𝜎1 ∪̇ ... ∪̇𝜎𝑛
. The map 𝑉 is the result of evaluating property bindings 𝐵 under a

context 𝜎 ∪̇𝜎1 ∪̇ . . . ∪̇𝜎𝑛, which includes the state of the current component (𝜎) and

the state of all the immediate children of the current component (𝜎1, . . . , 𝜎𝑛). The

update function uses the expression evaluation function [[𝑒]]Γ, which we lift to operate

87

over bindings. That is, [[𝐵]]Γ evaluates 𝑒 under context Γ for each 𝑝 ← 𝑒 ∈ 𝐵, and

returns a map of property names to values (dom𝐵 → 𝒱).

Because there are no cycles in the bindings and because the output properties of

a component can’t refer to its own inputs, the update function can update an entire

component tree in one pass and all property values will be in a consistent state with

respect to the bindings.

6.2.2 Concept Component Behavior

The transition relation −→⊆ A×A includes a set of built-in transitions A×A that

determine the behavior of concept components, which are implemented in a different

language and are not included in the semantics. The transitions that determine the

behavior of concept components are all of the form:

≺ 𝜎, 𝒞, 𝐵, 𝑐.𝑛 ≻; Σ ∪̇ {𝑐 ↦→ 𝑆𝑐} −→≺ 𝜎′, 𝒞 ′, 𝐵′, 𝑐.𝑛 ≻; Σ ∪̇ {𝑐 ↦→ 𝑆 ′
𝑐}

The concept transitions take an application instance configuration with a concept

component instance configuration of ID 𝑐.𝑛, state 𝜎, children 𝒞, and bindings 𝐵 to

a new application instance configuration with a new component instance configura-

tion with the same ID as the one before, but with a new state 𝜎′, children 𝒞 ′ and

bindings 𝐵′. The rule also allows the component to update the global state of the

application by mutating the concept server state from a state 𝑆𝑐 ∈ 𝒮 to 𝑆 ′
𝑐 ∈ 𝒮.

The concept transitions encapsulate concept component behavior such as updating

an output property when the user selects an option in a dropdown, or saving a new

post to the database when the user clicks on a button.

Example. The behavior of the dv.gen-id concept component is given by the

following set of transitions, where ID is the set of valid unique identifiers:

{ ≺ ∅, ∅, ∅, dv.gen-id ≻; Σ −→≺ {dv.gen-id.id ↦→ 𝑖}, ∅, ∅, dv.gen-id ≻; Σ | 𝑖 ∈ ID}

88

CHILD-STEP
≺ 𝜎𝑖, 𝒞𝑖, 𝐵𝑖, 𝜄𝑖 ≻; Σ −→≺ 𝜎′

𝑖, 𝒞 ′𝑖, 𝐵′
𝑖, 𝜄𝑖 ≻; Σ′

≺ 𝜎, 𝒞 ∪̇ {≺ 𝜎𝑖, 𝒞𝑖, 𝐵𝑖, 𝜄𝑖 ≻}, 𝐵, 𝑛 ≻; Σ −→
update(≺ 𝜎, 𝒞 ∪̇ {≺ 𝜎′

𝑖, 𝒞 ′𝑖, 𝐵′
𝑖, 𝜄𝑖 ≻}, 𝐵, 𝑛 ≻); Σ′

Figure 6-1: Inference rule for application component instance configurations

The transition states that the dv.gen-id component can, starting from an empty

local state, output an ID value 𝑖 ∈ ID. The gen-id component outputs an ID value

𝑖 by adding to its local state a new property dv.gen-id.id with value 𝑖. The global

application state Σ remains unchanged.

While nothing in the rule prevents the same ID value from being generated more

than once, in practice the implementation generates random IDs with a very low

probability of collision.

6.2.3 Rules

On the first iteration of the semantics, we only have one inference rule CHILD-STEP,

which is shown in Fig. 6-1. CHILD-STEP defines the behavior of an application in-

stance configuration in terms of the behavior of a child of the application component

configuration in the application instance configuration. The child can be a concept

component instance configuration or an application component instance configura-

tion. We use 𝜄𝑖 for the ID of the child to indicate that the child can be a concept

or application component instance configuration and assume 𝜄𝑖 ∈ ℐ. We use 𝑛 to

indicate the component instance configuration in the conclusion of the inference rule

must be an application instance configuration, and assume 𝑛 ∈ 𝒩 ⊆ ℐ.

An application component that has no children has no behavior at all. This is

because the only behavior of an application component is to coordinate the behavior

of its children components.

6.2.4 Initial Application Instance Configuration

The initial configuration of a concept component and server state are given by two

concept catalog functions. The function ΘCC : 𝒯 × 𝒩 → CC takes a concept com-

ponent identifier 𝑐.𝑛 ∈ 𝒯 × 𝒩 and returns an initial concept component instance

89

configuration 𝑐𝑐 ∈ CC. The function Θ𝒮 : 𝒯 → 𝒮 takes a concept name 𝑐 ∈ 𝒯

and returns an initial concept state 𝑆0 ∈ 𝒮. The initial global application state is

Σ0 = {𝑐 ↦→ Θ𝒮(𝑐) | 𝑐 ∈ IC} where IC ⊆ 𝒯 is the set of concepts used in the application.

We formalize the translation from a core syntax of Déjà Vu to the semantics elements

defined in the operational semantics later in §6.5.

Example: Submit Post

Let’s consider a small example application with the following pseudocode:

1 submit := [// define new application component submit

2 dv.gen-id // include the built-in gen-id component

3 // include the create concept component of post and bind its id input

4 post.create id = dv.gen-id.id

5]

The application consists of one application component called submit. The

submit application component (lines 1-5) includes the gen-id concept component

of dv (line 2) and the create component of the post concept (line 4). We also bind

the id input of create to the id output of gen-id (line 4). In this example, we are

going to start with a fresh instance of submit, have dv.gen-id generate a unique

ID, and have post.create save a new post to the database with the ID generated

by dv.gen-id.

Initial Application Instance Configuration

Initial Concept Configurations. The initial component instance configuration

for dv.gen-id and post.create is ΘCC(dv.gen-id) =≺ ∅, ∅, ∅,dv.gen-id≻ and

ΘCC(post) =≺ {post.create.id ↦→ ⊥}, ∅, ∅, post.create ≻ respectively. Both

components have no bindings or children. The dv component starts with an empty

local state, and post starts with an id input property set to ⊥. The initial concept

90

server state for post is Θ𝒮(post) = {posts ↦→ ∅} and the initial state for dv is

Θ𝒮(dv) = ∅.

Children. The submit component has two children: dv.gen-id and post.create.

The initial configuration for the concept components is determined by ΘCC. The

initial set of children components of submit is:

𝒞0 =

⎧⎨⎩ ≺ ∅, ∅, ∅, dv.gen-id ≻≺ {post.create.id ↦→ ⊥}, ∅, ∅, post.create ≻

⎫⎬⎭ (6.3)

Bindings. In submit, there’s only one property binding, which binds the id prop-

erty of the create component of post with the expression dv.gen-id.id. In the

set of bindings for submit, we fully-qualify the id input, so that the binding on line

4 becomes post.create.id← dv.gen-id.id and the set of bindings for submit is:

𝐵 = {post.create.id← dv.gen-id.id} (6.4)

Initial Application Instance Configuration. Since submit has no inputs, it

starts with an empty local state 𝜎 = ∅. The initial component instance configuration

for submit is

submit0 =≺ ∅, 𝐶0, 𝐵, submit ≻ (6.5)

where 𝐶0 and 𝐵 are defined in (6.3) and (6.4) respectively. The initial application

state Σ0 is

Σ0 =

⎧⎨⎩ post ↦→ {posts ↦→ ∅}

dv ↦→ ∅

⎫⎬⎭ (6.6)

and the initial application instance configuration for the example application is

≺ ∅, 𝐶0, 𝐵, submit ≻; Σ0

91

Concept Component Behavior

Component dv.gen-id. To explain the behavior of submit, we must first give

the behavior of the concept components dv.gen-id and post.create. As explained

in §6.2.2, the behavior of dv.gen-id is given by the following set of transitions,

where ID is the set of valid unique identifiers:

{≺ ∅, ∅, ∅, dv.gen-id ≻; Σ −→≺ {dv.gen-id.id ↦→ 𝑖}, ∅, ∅, dv.gen-id ≻; Σ | 𝑖 ∈ ID}

Component post.create. The behavior of post.create is given by the follow-

ing set of transitions, where Content is the set of valid post contents:

{

≺ {post.create.id ↦→ 𝑝𝑖𝑑}, ∅, ∅, post.create ≻;

Σ ∪̇ {post ↦→ {posts ↦→ {(id: 𝑖𝑑1, content: 𝑐1), . . . , (id: 𝑖𝑑𝑛, content: 𝑐𝑛)}}}

−→

≺ {post.create.id ↦→ 𝑝𝑖𝑑}, ∅, ∅, post.create ≻;

Σ ∪̇ {post ↦→ {

posts ↦→ {(id: 𝑖𝑑1, content: 𝑐1), . . . , (id: 𝑖𝑑𝑛, content: 𝑐𝑛)}}} ∪̇

{(id: 𝑝𝑖𝑑, content: 𝑝𝑐)}}

| 𝑝𝑖𝑑 ∈ ID ∧ 𝑝𝑖𝑑 /∈ {𝑖𝑑1, . . . , 𝑖𝑑𝑛}, 𝑝𝑐 ∈ Content

}

The transition says that the post.create component can, starting from a local

state in which the id input is 𝑝𝑖𝑑, add a new post to posts with ID 𝑝𝑖𝑑 and any

content 𝑝𝑐 ∈ Content, as long as there’s no other post with the same ID already in

posts.

92

Example Derivation

In this example derivation, we are going to have the application instance do two

steps. On the first step, the gen-id component outputs a unique ID value 8afc for

the post. On the second step, create saves a new post to the database, using the

generated ID as the post ID. Each step has a proof justifying the step.

1. Output ID. In the first step, we apply the CHILD-STEP rule:

CHILD-STEP

≺ ∅, ∅, ∅, dv.gen-id ≻; Σ0 −→
≺ {dv.gen-id.id ↦→ 8afc}, ∅, ∅, dv.gen-id ≻; Σ0

≺ ∅, 𝒞0, 𝐵, submit ≻; Σ0 −→≺ ∅, 𝒞1, 𝐵, submit ≻; Σ0

where 8afc ∈ ID. 𝐶0, 𝐵, and Σ0 were defined previously in (6.3), (6.4), and

(6.6) respectively. The new children set 𝐶1 is defined as follows:

𝒞1 =

⎧⎨⎩ ≺ {dv.gen-id.id ↦→ 8afc}, ∅, ∅, dv.gen-id ≻

≺ {post.create.id ↦→ 8afc}, ∅, ∅, post.create ≻

⎫⎬⎭
The updated component with children set 𝐶1 is the result of running

update(

≺ ∅,

⎧⎨⎩ ≺ {dv.gen-id.id ↦→ 8afc}, ∅, ∅, dv.gen-id ≻

≺ {post.create.id ↦→ ⊥}, ∅, ∅, post.create ≻

⎫⎬⎭ , 𝐵, submit ≻)

where

[[𝑝← dv.gen-id.id]]Γ = {𝑝 ↦→ 𝑒𝑖𝑑} if Γ(dv.gen-id.id) = 𝑒𝑖𝑑

2. Save Post. In the second and final step, we apply the same CHILD-STEP

rule, but this time with the post.create child taking a step to save a new

post to the database:

93

CHILD-STEP

≺ {post.create.id ↦→ 8afc}, ∅, ∅, post.create ≻; Σ0 −→
≺ {post.create.id ↦→ 8afc}, ∅, ∅, post.create ≻; Σ1

≺ ∅, 𝒞1, 𝐵, submit ≻; Σ0 −→≺ ∅, 𝒞1, 𝐵, submit ≻; Σ1

where

Σ1 =

⎧⎨⎩ post ↦→ {posts ↦→ {(id :8afc, content : ”hello”)

dv ↦→ ∅

⎫⎬⎭
and "hello" ∈ Content.

The result is that post.create has saved a new post with the ID given by dv.gen-id.

6.3 Second Iteration: Clients

In the second iteration, we add clients and navigation. Instead of assuming there’s

only one client in the application instance configuration, we will now define clients and

update the definition of an application instance configuration to contain a set of clients

(§6.3.1). Because we update the definition of an application instance configuration,

we also update the form of the concept component built-in transitions (§6.3.2). We

also add new rules so that new clients can be added to the application instance and

existing clients can be removed, and we also allow a concept component to cause a

client to navigate to another component (§6.3.3).

6.3.1 Definitions

Definition 6.3.1. A client is a tuple ⟨𝑐, 𝑥⟩, where:

• 𝑐 ∈ C is a component instance configuration. The component 𝑐 represents the

component currently executing on the client.

94

• 𝑥 ∈ AC0 ∪ {⊥} is an application component instance configuration to navigate

to, or ⊥ if there’s no navigation request. The set AC0 ⊆ AC is the set of initial

application component instance configurations.

Our client structure is essentially a continuation [55], because it represents the

control flow of the program running on the client. Like in languages with first-class

continuations, our client structure allows a concept component to access and change

the control flow of a client by updating the client structure to have a navigation

request.

Definition 6.3.2. An application instance configuration is a tuple Λ; Σ, where:

• Λ is a set of clients.

• Σ is the server state of the application. Like in the previous iteration of the

semantics, we model the server state Σ as a partial function Σ : 𝒯 ↦→ 𝒮 mapping

concept names to concept server states.

6.3.2 Concept Component Behavior

Since we have updated the definition of an application instance configuration, we have

to update the transitions that determine the behavior of concepts components. The

concept component transitions now have the form:

𝐿 ∪̇ {⟨≺ 𝜎, 𝒞, 𝐵, 𝑐.𝑛 ≻,⊥⟩}; Σ ∪̇ {𝑐 ↦→ 𝑆𝑐} −→

𝐿 ∪̇ {⟨≺ 𝜎′, 𝒞 ′, 𝐵′, 𝑐.𝑛 ≻, 𝑥⟩}; Σ ∪̇ {𝑐 ↦→ 𝑆 ′
𝑐}

The concept transitions take an application instance configuration with a client

on a concept instance configuration of ID 𝑐.𝑛, state 𝜎, children 𝒞, and bindings 𝐵 to a

new application instance configuration with a new component instance configuration

with the same ID as the one before, but with a new state 𝜎′, children 𝒞 ′ and bindings

𝐵′. The rule also allows the component to update the global state of the application

by mutating the concept server state from a state 𝑆𝑐 ∈ 𝒮 to 𝑆 ′
𝑐 ∈ 𝒮 and to add

a navigation request 𝑥 ∈ AC0 to the client. Concept components can’t make a

transition if there’s an active navigation request on the client.

95

CHILD-STEP
𝐿 ∪̇ {⟨≺ 𝜎𝑖, 𝒞𝑖, 𝐵𝑖, 𝜄𝑖 ≻,⊥⟩}; Σ −→ 𝐿 ∪̇ {⟨≺ 𝜎′

𝑖, 𝒞 ′𝑖, 𝐵′
𝑖, 𝜄𝑖 ≻, 𝑥⟩}; Σ′

𝐿 ∪̇ {⟨≺ 𝜎, 𝒞 ∪̇ {≺ 𝜎𝑖, 𝒞𝑖, 𝐵𝑖, 𝜄𝑖 ≻}, 𝐵, 𝑛 ≻,⊥⟩}; Σ −→
𝐿 ∪̇ {⟨update(≺ 𝜎, 𝒞 ∪̇ {≺ 𝜎′

𝑖, 𝒞 ′𝑖, 𝐵′
𝑖, 𝜄𝑖 ≻}, 𝐵, 𝑛 ≻), 𝑥⟩}; Σ′

CLIENT-NAV
𝑐𝑛𝑒𝑥𝑡 ∈ AC0

𝐿 ∪̇ {⟨𝑐, 𝑐𝑛𝑒𝑥𝑡⟩}; Σ −→ 𝐿 ∪̇ {⟨𝑐𝑛𝑒𝑥𝑡,⊥⟩}; Σ

CLIENT-ADD
𝑐 ∈ AC0

𝐿; Σ −→ 𝐿 ∪̇ {⟨𝑐,⊥⟩}; Σ

CLIENT-DROP
𝐿 ∪̇ {𝑙}; Σ −→ 𝐿; Σ

Figure 6-2: Inference rules for application instance configurations with clients

6.3.3 Rules

In this iteration, we add new rules for navigation, and for adding and removing clients

to an application instance configuration. We also update the original CHILD-STEP

rule to operate on only one of the clients at a time. The rules for the second iteration

of the semantics are shown in Fig. 6-2.

The CHILD-STEP rule only applies to a client when the client has no active

navigation request. If the client has an active navigation request, the client is blocked

until an application of the CLIENT-NAV rule causes the client to navigate to the

next component and removes the navigation request. New clients can be added to an

application instance configuration at any time with the CLIENT-ADD rule. Existing

clients can be removed from an application instance configuration at any time with

the CLIENT-DROP rule.

Example: Link to Submit Post

In this example, we extend the previous example application with a new component

home that includes a link to submit:

96

1 submit := [// define new application component submit

2 dv.gen-id // include the built-in gen-id component

3 // include the create concept component of post and bind its id input

4 post.create id = dv.gen-id.id

5]

6 home := [// define new application component home

7 dv.link href = submit // include a link to submit

8]

In this example, we are going to start with an application instance that has no

clients. Then we are going to add a new client with the home component and have

dv.link cause a navigation to submit.

Initial Application Instance Configuration

The set AC0 includes the initial component instance configuration for submit and

for home. The initial configuration for submit, submit0, is the same as in (6.5).

The initial configuration for home is

home0 =

≺ ∅, {≺ {href ↦→ ⊥}, ∅, ∅, dv.link ≻},

{dv.link.href← submit0}, home ≻

(6.7)

The initial set of clients is empty and the initial global application state Σ0

is the same as in (6.6), because the set of included concepts is the same as in

the previous example. The initial application instance configuration is ∅; Σ0 and

AC0 = {home0, submit0}.

Link Behavior

The behavior of dv.link is given by the following set of transitions:

97

{𝐿 ∪̇ {⟨≺ {href ↦→ 𝑐}, ∅, ∅, dv.link ≻,⊥⟩; Σ} −→

𝐿 ∪̇ {⟨≺ {href ↦→ 𝑐}, ∅, ∅, dv.link ≻, 𝑐⟩; Σ} | 𝑐 ∈ AC0}

A dv.link component with an href input equal to a component 𝑐 ∈ AC0 can

set the client navigation request to 𝑐 if there’s no active navigation request on the

client.

Example Derivation

In this example derivation, we are going to have the application instance do three

steps. On the first step, a new client with the home component is added to the

application instance. On the second step, dv.link sets a navigation request to

submit on the client. On the third step, the client navigates to submit. Each

step has a proof justifying the step. We are going to use home0, defined in (6.7),

to refer to the initial configuration for the home component. And we are going to

use submit0, defined in (6.5), to refer to the initial configuration for the submit

component.

1. New Client. In the first step, we apply the CLIENT-ADD rule:

CLIENT-ADD
home0 ∈ AC0

∅; Σ0 −→ {⟨home0,⊥⟩}; Σ0

The application of this rule adds a new client to the application instance

configuration. The new client runs home0 and has no active navigation request.

2. Link Adds Navigation Request to submit. In the second step, we apply

the CHILD-STEP rule:

CHILD-STEP

{⟨≺ {href ↦→ submit0}, ∅, ∅, dv.link ≻,⊥⟩}; Σ0 −→
{⟨≺ {href ↦→ submit0}, ∅, ∅, dv.link ≻, submit0⟩; Σ0

{⟨home0,⊥⟩}; Σ0 −→ {⟨home0, submit0⟩}; Σ0

98

The application of this rule updates the client configuration to have a navi-

gation request to submit0, which is the value of the href input of dv.link.

3. Client Navigates to submit. In the third and last step, we apply the

CLIENT-NAV rule to cause the client to navigate to submit:

CLIENT-NAV
submit0 ∈ AC0

{⟨home0, submit0⟩}; Σ0 −→ {⟨submit0,⊥⟩}; Σ0

Note that at this point the application instance configuration ⟨submit0,⊥⟩; Σ0

is the same as the initial configuration of the previous example, but augmented

with the notion of a client. Using the same steps as in the previous example,

we could have the client now save a new post to the database.

6.4 Third Iteration: Full Semantics

In the third and final iteration of the semantics we add transaction components.

We update the set of component identifiers to add a type to application component

identifiers. The type can be ∨, which represents a regular or “or” component, or

∧, which represents a transaction or “and” component (§6.4.1). We also distinguish

between an operation transition, that is never synchronized, and an action transition,

that may be synchronized or not depending on the type of the application component.

Before this iteration, transitions were unlabelled, but in this iteration we add

transition labels. A transition with label 𝑜𝑝 represents an operation transition, which

is never synchronized. A transition with label 𝑎 represents an action transition, which

may be synchronized or not depending on the component type. For simplicity, we

don’t distinguish between eval and exec actions in the semantics. Both eval and exec

are synchronized in the same way, so it is easy to extend the semantics to distinguish

between eval/exec actions: instead of a label 𝑎, have labels 𝑒𝑣𝑎𝑙 and 𝑒𝑥𝑒𝑐 and change

each rule with an action transition into two rules that are the same but one has an 𝑒𝑣𝑎𝑙

transition and the other an 𝑒𝑥𝑒𝑐 transition replacing the original action transition.

99

The transition relation −→ ⊆ A×{𝑜𝑝, 𝑎}×A includes a set of built-in transitions

that determine the behavior of concept components (§6.4.2) and rules for synchroniz-

ing actions depending on the component type (§6.4.3).

6.4.1 Definitions

The definition of a component instance configuration is the same a before, but we

redefine the set of component identifiers to ℐ ⊆ (𝒯 × 𝒩) ∪ (𝒩 × {∧,∨}).

6.4.2 Concept Component Behavior

In this iteration, concept components can take an action step or an operation step.

The action transitions are all of the form:

𝐿 ∪̇ {⟨≺ 𝜎, 𝒞, 𝐵, 𝑐.𝑛 ≻,⊥⟩}; Σ ∪̇ {𝑐 ↦→ 𝑆𝑐}
𝑎−−−−→

𝐿 ∪̇ {⟨≺ 𝜎′, 𝒞 ′, 𝐵′, 𝑐.𝑛 ≻, 𝑥⟩}; Σ ∪̇ {𝑐 ↦→ 𝑆 ′
𝑐}

where 𝑆𝑐, 𝑆
′
𝑐 ∈ 𝒮. In an action transition, concept components can modify the concept

server state. The operation transitions are all of the form:

𝐿 ∪̇ {⟨≺ 𝜎, 𝒞, 𝐵, 𝑐.𝑛 ≻,⊥⟩}; Σ
𝑜𝑝−−−−→ 𝐿 ∪̇ {⟨≺ 𝜎′, 𝒞 ′, 𝐵′, 𝑐.𝑛 ≻, 𝑥⟩}; Σ

An operation step cannot modify the global state, which is why the global state Σ

remains unchanged after a concept component takes an operation step. The reason

for this restriction is to have all concept transitions that can produce a side-effect on

the server be an action, which enables the user to synchronize the action with other

actions. If otherwise, there could be concept components that fetch data from their

server but because the fetch doesn’t happen as part of an action there’s no way for

the developer to, for example, synchronize the action with authenticate to prevent

a malicious user from seeing information they are not supposed to see. We could say

that all concept transitions are action transitions, but it is useful to allow concept

components to take a step without triggering all their sibling concept components.

100

For example, a component with a dropdown might update an output property with

the selected item value every time the user selects a new item. Since this is a step

that doesn’t involve reading or writing the server state, it could be an operation.

6.4.3 Rules

In this iteration, we add new rules for synchronizing actions depending on whether

the component is a transaction component or not. The rules for the third iteration

of the semantics are shown in Fig. 6-3.

In this iteration, we replace CHILD-STEP with three new rules: CHILD-OP,

CHILD-OR and CHILD-AND. CHILD-OP represents a step that is not synchronized.

In CHILD-OR, a child concept component is taking an action step, but because the

application component that contains the concept component is an “or” component,

the action step is not synchronized with the other concept components. On the other

hand, in CHILD-AND, if a child concept component takes an action step, all other

concept components in the containing application component must take an action

step as well. This is because the containing application component is a transaction

or “and” component.

In CHILD-AND, all child concept components must take an action step together

if one of them does. This restriction is given by the requirement 𝒞 ⊆ AC in the

CHILD-AND rule. Since we ask that all the components in the transaction must

be from different concepts, which is given by the requirement 𝑐𝑖 ̸= 𝑐𝑗∀𝑖, 𝑗 ∈ 1 . . .𝑚,

we know that all the updated application states Σ′
1, . . . ,Σ

′
𝑚 have updated different

concept server states of the global application state. It is therefore safe to compute

the new global application state by taking the previous store Σ and using the store

update operator ⊗ to update its property values with Σ′
1, . . . ,Σ

′
𝑚, regardless of the

order in which ⊗ is applied to the Σ′
1, . . . ,Σ

′
𝑚. It is important, however, for Σ to go

first, so as to not override a new concept server state with an old value.

101

C
H

IL
D

-O
P

𝐿
∪̇
{⟨
≺

𝜎
𝑖,
𝒞 𝑖
,𝐵

𝑖,
𝜄 𝑖
≻
,⊥
⟩}

;Σ
𝑜
𝑝

−−
−−
→

𝐿
∪̇
{⟨
≺

𝜎
′ 𝑖,
𝒞′ 𝑖,

𝐵
′ 𝑖,
𝜄 𝑖
≻
,𝑥
⟩}

;Σ
′

𝐿
∪̇
{⟨
≺

𝜎
,𝒞
∪̇
{≺

𝜎
𝑖,
𝒞 𝑖
,𝐵

𝑖,
𝜄 𝑖
≻
},
𝐵
,𝑚
≻
,⊥
⟩}

;Σ
𝑜
𝑝

−−
−−
→

𝐿
∪̇
{⟨
up

da
te

(≺
𝜎
,𝒞
∪̇
{≺

𝜎
′ 𝑖,
𝒞′ 𝑖,

𝐵
′ 𝑖,
𝜄 𝑖
≻
})
,𝐵

,𝑚
≻

),
𝑥
⟩}

;Σ
′

C
H

IL
D

-O
R

𝐿
∪̇
{⟨
≺

𝜎
𝑖,
𝒞 𝑖
,𝐵

𝑖,
𝑐.
𝑛
≻
,⊥
⟩}

;Σ
𝑎

−−
−−
→

𝐿
∪̇
{⟨
≺

𝜎
′ 𝑖,
𝒞′ 𝑖,

𝐵
′ 𝑖,
𝑐.
𝑛
≻
,𝑥
⟩}

;Σ
′

𝐿
∪̇
{⟨
≺

𝜎
,𝒞
∪̇
{≺

𝜎
𝑖,
𝒞 𝑖
,𝐵

𝑖,
𝑐.
𝑛
≻
},
𝐵
,𝑚

∨
≻
,⊥
⟩}

;Σ
𝑜
𝑝

−−
−−
→

𝐿
∪̇
{⟨
up

da
te

(≺
𝜎
,𝒞
∪̇
{≺

𝜎
′ 𝑖,
𝒞′ 𝑖,

𝐵
′ 𝑖,
𝑐.
𝑛
≻
})
,𝐵

,𝑚
∨
≻

),
𝑥
⟩}

;Σ
′

C
H

IL
D

-A
N

D

𝐿
∪̇
{⟨
≺

𝜎
1
,𝒞

1
,𝐵

1
,𝑐

1
.𝑛

1
≻
,⊥
⟩}

;Σ
𝑎

−−
−−
→

𝐿
∪̇
{⟨
≺

𝜎
′ 1
,𝒞

′ 1
,𝐵

′ 1
,𝑐

1
.𝑛

1
≻
,𝑥

1
⟩}

;Σ
′ 1

. . .
𝐿
∪̇
{⟨
≺

𝜎
𝑚
,𝒞

𝑚
,𝐵

𝑚
,𝑐

𝑚
.𝑛

𝑚
≻
,⊥
⟩}

;Σ
𝑎

−−
−−
→

𝐿
∪̇
{⟨
≺

𝜎
′ 𝑚
,𝒞

′ 𝑚
,𝐵

′ 𝑚
,𝑐

𝑚
.𝑛

𝑚
≻
,𝑥

𝑚
⟩}

;Σ
′ 𝑚

𝒞
⊆

A
C

𝑥
∈
{𝑥

1
,.
..
,𝑥

𝑚
}
∖
{⊥
}
∨
{𝑥

1
,.
..
,𝑥

𝑚
}

=
{⊥
}

=
{𝑥
}

𝑐 𝑖
̸=

𝑐 𝑗
∀𝑖
,𝑗
∈

1
..
.𝑚

𝐿
∪̇
{⟨
≺

𝜎
,𝒞
∪̇
{≺

𝜎
𝑖,
𝒞 1
,𝐵

𝑖,
𝑐 1
.𝑛

1
≻
,.
..
,≺

𝜎
𝑚
,𝒞

𝑚
,𝐵

𝑚
,𝑐

𝑚
.𝑛

𝑚
≻
},
𝐵
,𝑛

∧
≻
,⊥
⟩}

;

Σ
𝑜
𝑝

−−
−−
→

𝐿
∪̇
{⟨
up

da
te

(≺
𝜎
,𝒞
∪̇
{≺

𝜎
′ 1
,𝒞

′ 1
,𝐵

′ 1
,𝑐

1
.𝑛

1
≻
,.
..
,≺

𝜎
′ 𝑚
,𝒞

′ 𝑚
,𝐵

′ 𝑚
,𝑐

𝑚
.𝑛

𝑚
≻
},
𝐵
,𝑛

∧
≻

),
𝑥
⟩}

;
Σ
⊗

Σ
′ 1
⊗

..
.⊗

Σ
′ 𝑚

C
LI

E
N

T
-N

AV
,C

LI
E

N
T

-A
D

D
,a

nd
C

LI
E

N
T

-D
R

O
P

ru
le

s
ar

e
th

e
sa

m
e

as
in

F
ig

.6
-2

w
it

h
al

lt
ra

ns
it

io
ns

la
be

lle
d

op

F
ig

ur
e

6-
3:

In
fe

re
nc

e
ru

le
s

fo
r

ap
pl

ic
at

io
n

in
st

an
ce

co
nfi

gu
ra

ti
on

s
w

it
h

sy
nc

hr
on

iz
at

io
n

102

Example: Submit Post with Event

In this example, we extend the previous example application by making submit a

transaction component and adding create-event:

1 tx submit := [// define new transaction application component submit

2 dv.gen-id // include the built-in gen-id component

3 // include the create concept component of post and bind its id input

4 post.create id = dv.gen-id.id

5 // include the create concept component of event and bind its id input

6 event.create id = dv.gen-id.id

7]

8 home := [// define new application component home

9 dv.link href = submit // include a link to submit

10]

This application allows a user to post about interesting events happening on

campus. For example, a client can post “New exhibit at the MIT Museum!” with a

start date 03/03/2020 and an end date 03/05/2020.

Initial Application Instance Behavior

Since the steps for taking an application instance configuration with no clients to

one with one client on submit is similar to the steps in the previous example, we

are going to start this example from an application instance configuration in which

we already have a client on the submit component. Also, we are going to assume

the ID value generated by gen-id was already propagated through the bindings to

post.create and event.create.

The set of bindings for submit is:

103

𝐵 =

⎧⎨⎩ post.create.id← dv.gen-id.id

event.create.id← dv.gen-id.id

⎫⎬⎭ (6.8)

Since we assume that the initial submit component has already propagated the

generated ID through the bindings, we have:

dv.gen-id𝐼 =≺ {dv.gen-id.id ↦→ 8afc}, ∅, ∅, dv.gen-id ≻

post.create𝐼 =≺ {post.create.id ↦→ 8afc}, ∅, ∅, post.create ≻

event.create𝐼 =≺ {event.create.id ↦→ 8afc}, ∅, ∅, event.create ≻

(6.9)

and the set of children of submit𝐼 is:

𝒞 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv.gen-id𝐼

post.create𝐼

event.create𝐼

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.10)

The initial server state Σ0 includes the state for event, in addition to the state

for dv and post:

Σ0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv ↦→ ∅

post ↦→ {posts ↦→ ∅}

event ↦→ {events ↦→ ∅}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.11)

104

Create Event Behavior

The behavior of event.create is given by the following set of transitions, where

Date is a set of valid dates:

{

≺ {event.create.id ↦→ 𝑒𝑖𝑑}, ∅, ∅, event.create ≻;

Σ ∪̇ {event ↦→ {

events ↦→ {(id: 𝑖𝑑1, start: 𝑠1, end: 𝑒1), . . . , (id: 𝑖𝑑𝑛, start: 𝑠𝑛, end: 𝑒𝑛)}}}

𝑎−−−−→

≺ {event.create.id ↦→ 𝑒𝑖𝑑}, ∅, ∅, event.create ≻;

Σ ∪̇ {event ↦→ {

events ↦→ {(id: 𝑖𝑑1, start: 𝑠1, end: 𝑒1), . . . , (id: 𝑖𝑑𝑛, start: 𝑠𝑛, end: 𝑒𝑛)}}} ∪̇

{(id :𝑒𝑖𝑑, start :𝑒𝑠𝑡𝑎𝑟𝑡, end :𝑒𝑒𝑛𝑑)}}

| 𝑒𝑖𝑑 ∈ ID, 𝑒𝑖𝑑 /∈ {𝑖𝑑1, . . . , 𝑖𝑑𝑛}, 𝑒𝑠𝑡𝑎𝑟𝑡, 𝑒𝑒𝑛𝑑 ∈ Date

}

The transition says that the create component of event can, starting from a local

state in which the id input is 𝑒𝑖𝑑, take an action step and add a new event to events

with id 𝑒𝑖𝑑 ∈ ID and dates 𝑒𝑠𝑡𝑎𝑟𝑡, 𝑒𝑒𝑛𝑑 ∈ Date, as long as there’s no other event with

the same ID already in events.

Example Derivation

In this example derivation, we are going to have the application instance do a step,

in which both post.create and event.create take an action step. In the step,

we apply the CHILD-AND rule:

105

CHILD-AND

{⟨dv.gen-id𝐼 ,⊥⟩}; Σ0 𝑎−−−−→ {⟨dv.gen-id𝐼 ,⊥⟩}; Σ0

{⟨post.create𝐼 ,⊥⟩}; Σ0 𝑎−−−−→ {⟨post.create𝐼 ,⊥⟩}; Σ1
𝑝𝑜𝑠𝑡

{⟨event.create𝐼 ,⊥⟩}; Σ0 𝑎−−−−→ {⟨event.create𝐼 ,⊥⟩}; Σ1
𝑒𝑣𝑒𝑛𝑡

{⟨≺ ∅, 𝐶,𝐵, submit∧ ≻,⊥⟩}; Σ0 −→

{⟨≺ ∅, 𝐶,𝐵, submit∧ ≻,⊥⟩}; Σ1

where

Σ1
𝑝𝑜𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv ↦→ ∅

post ↦→ {posts ↦→

{(id: 8afc,

content: "New exhibit at the MIT Museum!")}}

event ↦→ {events ↦→ ∅}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.12)

Σ1
𝑒𝑣𝑒𝑛𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dv ↦→ ∅

post ↦→ {posts ↦→ ∅}

event ↦→ {events ↦→

{(id: 8afc, start: 03/03/2020, end: 03/05/2020)}}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(6.13)

and Σ1 is the result of Σ0 ⊗ Σ1
𝑝𝑜𝑠𝑡 ⊗ Σ1

𝑒𝑣𝑒𝑛𝑡:

Σ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv ↦→ ∅

post ↦→ {posts ↦→ {

(id: 8afc, content: "New exhibit at the MIT Museum!")}}

event ↦→ {events ↦→

{(id: 8afc, start: 03/03/2020, end: 03/05/2020)}}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.14)

106

⟨application⟩ ::= ⟨compDef ⟩* define application

⟨compDef ⟩ ::= [‘tx’] component-name ‘:=’ ⟨component⟩ define component

⟨component⟩ ::= property-name* ⟨binding⟩* ‘[’ ⟨child⟩* ‘]’ component value

⟨child⟩ ::= [concept-name‘.’]component-name ⟨binding⟩* include component

⟨binding⟩ ::= property-name ‘=’ expr property binding

Figure 6-4: Core Déjà Vu syntax in Backus-Naur form

The two concept components, post.create and event.create, are synchro-

nized to execute an action at the same time because they are included in a transac-

tion component. Each concept component modifies their own concept server state.

The different application server states Σ1
𝑝𝑜𝑠𝑡 and Σ1

𝑒𝑣𝑒𝑛𝑡, one with the post state

updated and the other one with the event state updated, are then merged together

to form the new application server state.

6.5 Core Syntax and Translation

A grammar in Backus-Naur form that describes a core syntax of Déjà Vu is shown

in Fig. 6-4. Non-terminal symbols are enclosed between ⟨⟩ and symbols between

quotes are terminals. The strings component-name, concept-name and property-name

represent names in𝒩 , 𝒯 , and 𝒫 respectively. The string expr represents an expression

in the syntax ℰ . In addition to the standard Backus-Naur form operators, we use 𝑥*

to denote zero or more occurrences of 𝑥, and [𝑥] for an optional 𝑥. We use ℘(𝐴)

to denote the powerset of set 𝐴. The core Déjà Vu syntax is the same we used as

pseudocode for the examples.

The semantic functions that translate the syntactic constructs of Fig. 6-4 to a

set of application component instance configurations are shown in Fig. 6-5. The

semantic functions make use of the catalog function ΘCC to retrieve the initial concept

component instance configuration for a child concept component. Given a Déjà Vu

application 𝑎, we run 𝐴ACJ𝑎K∅ to obtain the set AC0.

107

𝐴AC : ⟨𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛⟩ → Store→ ℘(AC)
𝐴ACJ𝑡1𝑛1 := 𝑐1 . . . 𝑡𝑚𝑛𝑚 := 𝑐𝑚KΓ ≡
let𝐺(𝑥) = 𝐺(𝑥− 1) ∪ {𝑛𝑥 ↦→ 𝐷ACJ𝑡𝑥𝑛𝑥 := 𝑐𝑥K𝐺(𝑥− 1)}, 𝐺(0) = Γ in
img𝐺(𝑚)

𝐷AC : ⟨𝑐𝑜𝑚𝑝𝐷𝑒𝑓⟩ → Store→ AC
𝐷ACJtx 𝑛:= 𝑐KΓ ≡
let ⟨{𝑝1, . . . , 𝑝𝑛}, 𝒞, 𝐵⟩ = 𝑇ACJ𝑐KΓ⊗ {this ↦→ 𝑛} in
≺ {𝑝1 ↦→ ⊥, . . . , 𝑝𝑛 ↦→ ⊥}, 𝒞, 𝐵, 𝑛∧ ≻

𝐷ACJ𝑛:= 𝑐KΓ ≡
let ⟨{𝑝1, . . . , 𝑝𝑛}, 𝒞, 𝐵⟩ = 𝑇ACJ𝑐KΓ⊗ {this ↦→ 𝑛} in
≺ {𝑝1 ↦→ ⊥, . . . , 𝑝𝑛 ↦→ ⊥}, 𝒞, 𝐵, 𝑛∨ ≻

𝑇AC : ⟨𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⟩ → Store→ ℘(P)×℘(C)×℘(B)
𝑇ACJ𝑖1 . . . 𝑖𝑛 𝑝1=𝑒1, . . . , 𝑝𝑚=𝑒𝑚 [𝑑1 . . . 𝑑𝑘]KΓ ≡
let ⟨𝑐1, 𝐵1⟩ = 𝐶ACJ𝑑1KΓ, . . . , ⟨𝑐𝑘, 𝐵𝑘⟩ = 𝐶ACJ𝑑𝑘KΓ in
⟨{𝑖1, . . . , 𝑖𝑛,Γ[this].𝑝1, . . . ,Γ[this].𝑝𝑚},
{𝑐1, . . . , 𝑐𝑘},
{Γ[this].𝑝1 ← 𝑒1, . . . ,Γ[this].𝑝𝑚 ← 𝑒𝑚} ∪ ∪𝑚

𝑖=1𝐵𝑖⟩

𝐶AC : ⟨𝑐ℎ𝑖𝑙𝑑⟩ → Store→ C×℘(B)
𝐶ACJ𝑛 𝑝1=𝑒1 . . . 𝑝𝑚=𝑒𝑚KΓ ≡ ⟨Γ[𝑛], {𝑛.𝑝1 ← 𝑒1, . . . , 𝑛.𝑝𝑚 ← 𝑒𝑚}⟩
𝐶ACJ𝑐.𝑛 𝑝1=𝑒1 . . . 𝑝𝑚=𝑒𝑚KΓ ≡ ⟨ΘCC(𝑐.𝑛), {𝑐.𝑛.𝑝1 ← 𝑒1, . . . , 𝑐.𝑛.𝑝𝑚 ← 𝑒𝑚}⟩

Figure 6-5: Semantic functions that translate grammar rules to a set of initial appli-
cation instance configurations

𝐴Σ : ⟨𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛⟩ → ℘(𝒯 × 𝒮)
𝐴ΣJ𝑡1𝑛1:=𝑐1 . . . 𝑡𝑚𝑛𝑚:=𝑐𝑚K ≡ {𝑐 ↦→ Θ𝑆(𝑐) | 𝑐 ∈ 𝐷ΣJ𝑐1K ∪ . . . ∪𝐷ΣJ𝑐𝑚}K

𝑇Σ : ⟨𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⟩ → ℘(𝒯)
𝑇ΣJ𝑖1 . . . 𝑖𝑛 𝑝1=𝑒1, . . . , 𝑝𝑚=𝑒𝑚[𝑑1 . . . 𝑑𝑘]K ≡ 𝐶ΣJ𝑑1K ∪ . . . ∪ 𝐶ΣJ𝑑𝑘K

𝐶Σ : ⟨𝑐ℎ𝑖𝑙𝑑⟩ → ℘(𝒯)
𝐶ΣJ𝑛 𝑝1=𝑒1 . . . 𝑝𝑚=𝑒𝑚K ≡ ∅
𝐶ΣJ𝑐.𝑛 𝑝1=𝑒1 . . . 𝑝𝑚=𝑒𝑚K ≡ {𝑐}

Figure 6-6: Semantic functions that translate grammar rules to an initial application
server state

108

The semantic functions that we use to obtain the initial server state Σ0 are shown

in Fig. 6-6. Given a Déjà Vu application 𝑎, we run 𝐴ΣJ𝑎K to obtain Σ0. The initial ap-

plication instance configuration is ∅; Σ0. New clients can be added to the application

instance through the CLIENT-ADD rule.

6.6 Other Considerations

Compared to our core syntax, the full language supports defining routes, setting the

input values of components to navigate to, configuring concepts, including a same

concept or component multiple times, and allowing concept components to store

information in the local storage of the browser. Although the core language is much

smaller than the full Déjà Vu language, it captures its semantic essence, and it’s

relatively straightforward to extend it to support these features and to translate the

constructs of the full language into the core language.

6.7 Summary

In this chapter, we presented a formal semantics of Déjà Vu. The semantics explain

the behavior of an application instance as a sequence of steps the application instance

can perform. We formally defined relevant notions in Déjà Vu such as components,

application instances and clients. We also presented a core syntax of Déjà Vu and

showed how to translate it to the mathematical objects used in our semantics. Al-

though the core syntax is much smaller than the full Déjà Vu language, it captures

the semantic essence of Déjà Vu. In the next chapter, we explain how we implemented

the semantics of Déjà Vu.

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

Chapter 7

Platform Implementation

In this chapter, we describe the implementation of our Déjà Vu platform. Déjà Vu is

built using TypeScript1, Angular2 and Node.js3. The implementation consists of:

• a client-side library to synchronize components (§7.1);

• a server gateway to coordinate transactions and run security checks (§7.2);

• a compiler that transpiles a Déjà Vu application into an Angular application

(§7.3); and

• a catalog of concepts (§7.4).

We also have a few Angular components that implement built-in Déjà Vu com-

ponents such as dv.gen-id for generating identifiers, dv.link for creating links, and

dv.button for creating buttons that trigger the execution of a transaction.

Fig. 7-1 shows the architecture of Déjà Vu. Each concept (A, B, or C) has a collec-

tion of client-side components, a server, and a database. The software elements that

are part of our platform (DV) are the client-side library and the server gateway. The

client-side library communicates with the gateway, which then communicates with

the concept servers. The communication between a concept server and its database

1https://www.typescriptlang.org/
2https://angular.io
3https://nodejs.org

111

https://www.typescriptlang.org/
https://angular.io
https://nodejs.org

Figure 7-1: Architecture of Déjà Vu

requires no mediation. The communication between the components and the client-

side library (Fig. 7-1,) happen within the web browser. The communication

between the client-side library and the gateway, and between the gateway and the

concept servers (Fig. 7-1,), happen via HTTP. A developer could, with very

little code, modify the gateway and concept servers to use HTTPS instead of HTTP if

desired. The gateway communicates with concept servers through designated routes

all concept servers are required to implement.

In principle, there’s no reason why the gateway software program and concept

server programs could not be replicated in multiple physical machines for scalability

or reliability. In fact, even with our current implementation, a skilled developer could

make this change with a few lines of code, but our platform currently has no explicit

support for configuring the number of replicas of the gateway or concept servers. The

default behavior of our platform is to co-locate the gateway and concept servers on

the same physical machine to reduce network latency, but it is easy for a developer

to deploy the gateway and concept servers on different machines or to co-locate only

some of them. Nonetheless, even when the gateway and concept servers are co-located

on the same physical machine, they still communicate via HTTP.

7.1 Client-Side Library

The client-side library has two responsibilities: dispatch eval/exec requests to the

appropriate concept components (§7.1.1) and communicate with the gateway (§7.1.2).

112

7.1.1 Event Dispatching

The client-side library allows concept components to register with the runtime system

to get notified when they should eval/exec, and to request the system to trigger

eval/execs of other components. The library is an event mediator [62]: a concept

component doesn’t subscribe to eval/exec events announced by other components

directly, but it does so indirectly through the library. The library determines how

to dispatch an eval/exec event depending on whether the application component is

a transaction component or not. Thus, it is as if each application component has a

local mediator to coordinate its own synchronization.

If the application component is a transaction component, the client-side library

dispatches an eval/exec request event of a concept component to all the concept

components in the application component. If the application component is a regular

component, the client-side library dispatches an eval/exec request event only to the

concept component that issued the eval/exec request.

7.1.2 Client-Server Communication

The client-side of a concept doesn’t communicate with its server directly. All com-

munication happens through the client-side library, which then communicates with

the gateway over HTTP. When a component evals/execs, the component tells the

runtime system which inputs were provided and can give extra information for its

concept server.

If the concept component being run is not part of a transaction, the client-side

library issues an HTTP request to the gateway as soon as the run request is received.

If it is part of a transaction, the client-side library triggers the eval/exec of the other

concept components in the application component, batches all run requests from all

components that are part of the transaction, and sends only one aggregate request to

the gateway.

113

After the gateway processes the request, concept servers receive an HTTP request

with the name of the component to run, whether it’s an eval or exec, its inputs, and

the extra information provided by the component.

7.2 Gateway Server

The gateway receives, from the client-side library, the information on what component

executed given as a path from the root, with what inputs, and the extra information

provided by the component. At this point, the gateway runs security checks to ensure

that the request is valid (§7.2.1). If the request is invalid, the gateway returns an error.

If the request is valid, the gateway forwards the request or initiates a transaction if

the request is a transaction request (§7.2.2).

7.2.1 Security

Our runtime system has no built-in notion of authentication or authorization. This

functionality is implemented in concepts, which enables experts to author a variety

of concepts that implement different authentication and authorization mechanisms

without requiring changes to the runtime system. The server-side concept implemen-

tations are part of the trusted computing base [35] of our platform, and are assumed

to have not been compromised. But the client-side code, of course, cannot be trusted.

We therefore need to ensure that a client cannot violate the structure of transactions,

or run the server-side action of a component that is not included in the application.

There are three properties of our implementation that allow the platform to enforce

a policy: (1) when run, components report the input values that they were run with;

(2) the gateway knows what components are expected to run and what the input

bindings are; and (3) concept components don’t communicate with their concept

servers directly, but rather all communication is via the gateway.

On startup, our system provides the application source code to the gateway. From

the source code, the gateway builds a component tree for each application route.

For example, an excerpt of the component tree for the "/" route of Slacker News

114

Figure 7-2: Excerpt of the component tree for route "/" of Slacker News

is shown in Fig. 7-2. Each component tree records the hierarchical relationships

between all the components that are reachable from the component the route maps

to. In Slacker News’s configuration file (Fig. 5-6), the route "/" is mapped to the

home component, which is why sn.home is the root of the component tree shown in

Fig. 7-2. The component sn.show-post is a child of sn.home, sn.upvote is a child

of sn.show-post, and so on. In addition to recording the hierarchical relationship

between components, the component tree also records the input property bindings.

Thus, for example, sourceId is an input of scoringposts.create-score and it is

bound to the expression $user.username.

When the gateway receives a request to eval/exec a certain component, it performs

a series of security checks. We will discuss the checks for transaction requests first and

discuss non-transaction requests later. First, when the gateway receives a transaction

request, the gateway verifies that the component path argument given by the client-

side library is a path of some component tree of the application. For example, let’s

say that the gateway gets a request to execute the upvote transaction of Slacker

115

Figure 7-3: Component path check

News. Then, as shown in Fig. 7-3, the gateway checks that the request path sn.home

→ sn.show-post → sn.upvote → dv.tx is a valid path. In this case, the path is

a valid path because it is a path of the component tree for route "/". This check

prevents a malicious user from executing a server-side action that is not part of the

application. For example, since scoringposts.delete-score is not part of Slacker

News, there’s no component tree path that includes delete-score, and it is not

possible for a malicious user to delete a score.

The second check the gateway performs on a transaction request is to verify that

the transaction request has a valid structure. A transaction request has a valid

structure if, for each concept component that is a child of the dv.tx node in the

component tree, there is a corresponding action in the request. As shown in Fig. 7-

4, for the upvote example the gateway checks that the request includes informa-

tion about scoringposts.create-score and authentication.authenticate. The

transaction request must include information about scoringposts.create-score

116

Figure 7-4: Transaction structure check

and authentication.authenticate because these components are the only two chil-

dren of the dv.tx node in sn.upvote. This check prevents a malicious user from

executing an incomplete transaction, which would allow a malicious user to, for ex-

ample, remove an authentication check from a transaction to perform an operation it

doesn’t have the necessary permissions to perform.

Finally, the gateway checks that input values received for the server-side actions

are consistent with what is specified in the component tree. It does this by evaluating

each input binding under the request context and verifying that the result matches

the input value reported by the component. As shown in Fig. 7-5, for the upvote

example the gateway evaluates the input binding of value, sourceId, targetId, and

username under the request context, and checks that the result matches the input val-

ues reported by scoringposts.create-score and authentication.authenticate.

As a result of this check, a malicious user can’t, for example, add 10 points to a

post in one upvote because 10 is not equal to 1. Also, because the sourceId input

117

Figure 7-5: Input check

of create-score and the username input of authenticate are bound to the same

expression $user.username, a malicious user can’t provide a user for authenticate

that is different from the one used as the source of the score in create-score. The

hidden input is not checked server-side because the only effect of a hidden input is

to hide a component client-side.

While evaluating code with untrusted inputs sounds dangerous, note that the

code being evaluated, a template expression, is very restricted in terms of what it

can do: while the syntax of template expressions is similar to that of JavaScript

expressions, no function calls or JavaScript operators that produce side-effects are

allowed. Also, the gateway evaluates the expression in a sandbox4 that prevents the

code from accessing the executing environment.

4https://www.npmjs.com/package/vm2

118

https://www.npmjs.com/package/vm2

For non-transaction requests, the gateway performs the same checks, with the

exception of the check that the transaction has the right structure, which is not

necessary because the request is not a transaction.

7.2.2 Transactions

If the request is valid and it is a non-transaction request, the gateway forwards the

request to the corresponding concept server and forwards the response obtained from

the concept server back to the client-side library.

If the request is a transaction request, the gateway acts as a transaction coordina-

tor and runs a two-phase commit [22] with all the concept servers that are part of the

transaction. The two-phase commit protocol is a popular communication protocol

for ensuring that the effects of a distributed transaction are atomic, so that either

all the effects of a transaction persist or none do. The two-phase commit protocol

consists of two phases: a voting phase and a commit phase. In the voting phase, a

transaction coordinator attempts to prepare all the participants to take the necessary

steps for the participants to commit or abort the transaction. Each participant votes

ok if they can commit, or abort if they detect a problem with the transaction. In

the commit phase, the coordinator commits the transaction if all participants voted

ok, or aborts if at least one participant voted to abort, and notifies the result to all

participants. The participants then proceed to commit or abort the changes.

In Déjà Vu, we use the two-phase commit protocol to ensure all concept servers

agree that a transaction is valid before any of the concepts involved in the transac-

tion make a permanent change to their server state. If all concept servers vote ok,

the gateway commits the transaction and forwards all the responses from the concept

servers in one HTTP response to the client-side library. The client-side library demul-

tiplexes the gateway response and forwards the individual responses to the concept

components. If at least one concept server votes abort, the gateway sends abort

messages to all concept servers and forwards the responses from the concept servers

that voted abort back to the client-side library. The error responses are used client-

side by concept components to show an error to the end-user. Note that the responses

119

from the concept servers that voted ok are not sent back if the transaction aborts.

This is to prevent a malicious client from receiving information it is not allowed to

see.

7.3 Compiler

Our compiler outputs an Angular application from the configuration and component

files of the Déjà Vu application. For each Déjà Vu application component, it creates

an Angular component. Our component language is a very thin layer atop Angu-

lar’s template syntax. The data binding functionality that recomputes a template

expression when any of its data dependencies changes is implemented by the Angular

framework.

When a developer runs a Déjà Vu application, we run the compiler, save the

output of the compiler in a hidden directory, and start the gateway and the concept

servers. The gateway, in addition to processing eval/exec requests, serves the Angular

application generated by the compiler.

7.4 Concept Catalog

Table 7.1 shows the current state of our catalog. To give a sense of the amount of

functionality implemented in each concept, we include the number of components (#

C) and the number of lines of HTML, CSS, client- and server-side TypeScript code

in the concept’s implementation (LoC). The lines of code count includes comments

and blank lines, but no unit tests are counted.

Most of the catalog functionality was implemented to replicate the student appli-

cations of our case study. Many of the student applications are social applications and

therefore our catalog includes several concepts, such as Comment, Label and Rating,

that are commonly found in social applications [4]. This catalog is, of course, just a

preliminary version. We hope expert developers will grow the catalog and contribute

new concepts. What the catalog will look like as more applications are developed

120

Table 7.1: Concept implementations in our catalog

Concept Purpose # C LoC

Authentication Verify a user’s identity with a username and pass-
word

10 1,105

Authorization Control access to resources 12 1,191
Chat Exchange messages in real time 5 684
Comment Share reactions to items 6 819
Event Schedule events 8 1,116
Follow Receive updates from sources 13 1,212
Geolocation Locate points of interest 8 1,248
Group Organize members into groups so that they can

be handled in aggregate
13 1,247

Label Label items so that they can be found later 9 1,020
Match Connect users after they both agree 8 859
Passkey Verify a user’s identity with a code 6 587
Property Describe an object with properties that have val-

ues
12 2,434

Ranking Rank items 5 574
Rating Crowdsource evaluation of items 9 929
Schedule Find a time to meet 8 1,691
Scoring Keep track of scores 7 970
Task Keep track of pieces of work to be done 13 1,310
Transfer Transfer money or items between accounts 12 1,207

remains to be seen—we discuss this question and other open questions regarding

the nature of our catalog later in Chapter 10. To support concept development, we

have built a command-line tool for scaffolding concepts and various libraries to ease

common tasks [34], such as handling transaction requests according to the two-phase

commit protocol.

7.4.1 Authoring Concepts

Concept authors implement a server file to process gateway requests and an Angular

component for each concept component. Each Angular component imports our client-

side library and invokes a library method to register itself with the runtime system as

soon as it loads. The same client-side library can be used by the component to trigger

the eval/exec. Components define callback methods that are invoked by our system

121

when there’s an exec/eval event. Within an exec/eval method, the component can

block for inputs.

While our current implementation is tied to Angular, it might be possible to

create a framework-agnostic version of Déjà Vu that would allow concept authors

to use whatever client-side framework they are most familiar with. We will discuss

these and other potential improvements to make it easier to author concepts later in

Chapter 10.

7.4.2 Criteria for Creating Concepts

To avoid overlapping functionality between concepts, we only add a new concept to

the catalog if there is no other concept with a similar purpose, and we only add

functionality to a concept if such functionality cannot be obtained by combining the

concept with other concepts. But having simpler and more orthogonal concepts can

mean more work combining them. For example, Authentication does not include

assigning first and last names to users, since this functionality can be obtained by

including Property to an application. It would be easier for application developers,

however, to have such common features included in Authentication as a configuration

option despite the redundancy. The right balance will have to be found empirically.

This trade-off between orthogonality and convenience happens in any system with

software components. In general, software components tend to start small but then

grow. We don’t expect Déjà Vu to be any different in this sense.

A different question is whether it is desirable for the catalog to contain multiple

variants of a single concept as separate concepts. For example, a variant of Authen-

tication in which an email address is the primary identifier and a variant in which a

social security number is used instead could be implemented as different authentica-

tion concepts. Our current approach has been to implement concept variants within

a concept, and let the developer configure which variant to use through a configura-

tion variable. For example, the transfer concept can be configured to transfer items

between accounts or money. Instead of having separate TransferItem and Trans-

122

ferMoney concepts, we have only one Transfer concept, which can be configured to

transfer items or money between accounts.

The same criteria that apply to conventional web application development apply to

concept development as well, from all the user interface principles, such as [47, 42], to

the software engineering principles that focus on code, such as [48, 49, 32]. Regarding

the design of concepts themselves, we have previously developed a set of principles

[28, 29, 50, 11] that we apply in the development of our catalog. These include the

one-to-one principle that states that a concept must have exactly one purpose that

motivates it; the genericity principle that states that reusing a well-known generic

concept is usually preferable to inventing a new concept; and the uniformity principle

that states that the behavior of a concept should be uniform so that the same actions

of a concept can be applied irrespective of the context. We have designed all the

concepts in our catalog to have exactly one motivating purpose, to be generic so that

they can be applied in different contexts, and to be uniform so that the same concept

actions can be used consistently in different contexts.

7.5 Summary

There are four software components in our platform implementation: a client-side

library, a server gateway, a compiler, and the catalog of concepts. The client-side

library synchronizes the execution of concept components and mediates client-server

communication. The gateway checks that client requests correspond to what is spec-

ified in the application source code, and runs a two-phase commit protocol with the

concept servers if necessary. Our compiler takes as input the JSON configuration

file, the HTML files of application components, and the CSS/SASS style sheet files,

and outputs an Angular application. The gateway, in addition to processing client

requests, also servers the Angular application.

In the next chapter, we present our case study, in which we used Déjà Vu to

replicate a series of non-trivial sample applications.

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

Chapter 8

Case Study

To evaluate Déjà Vu, we conducted a case study in which we used our platform to

replicate a collection of applications previously built by students for a web program-

ming course. Through the case study, we sought to understand whether it is possible

to build a variety of non-trivial applications using our platform, to compare the ef-

fort required to build an application using Déjà Vu instead of general-purpose tools,

and to understand how the quality of applications built with Déjà Vu compare to

applications built using standard general-purpose tools (§8.1).

To this end, we ran the student projects to determine their behaviors (§8.2) and

replicated the student applications (§8.3) using Déjà Vu (§8.4). Then, we conducted

a modularity analysis to determine how the Déjà Vu applications we built use the

concept catalog (§8.5), we estimated the effort savings from using Déjà Vu to build

the study applications instead of general-purpose tools (§8.6), and we compared the

quality of the Déjà Vu and student implementations (§8.7).

8.1 Research Questions

The research questions we sought to answer were the following:

• RQ1. Is it possible to build a variety of non-trivial applications using Déjà

Vu, without building non-generic concepts that are specific only to a given

application?

125

Obviously an entire application could be built as a single concept, so the real

question is not whether a given application can be built using Déjà Vu, but

whether a range of applications can be constructed from a relatively small set

of concepts.

• RQ2. How does the effort required to build a Déjà Vu application compare to

using standard general-purpose tools?

Even if we can achieve a good level of concept reuse, the effort savings from

concept reuse might not be enough if implementing and combining concepts is

much harder than re-implementing concepts from scratch using general-purpose

tools.

• RQ3. How does the quality of Déjà Vu applications compare to those applica-

tions built with standard general-purpose tools?

A developer can always, with enough time, fix every usability issue in an appli-

cation irrespective of whether it was built using Déjà Vu or built using general-

purpose tools. The question is really whether building applications with Déjà

Vu tends to produce more usable applications. Are certain kinds of usability

errors harder to make using Déjà Vu? What about other quality attributes such

as security and performance?

8.2 Method

With the students’ permission, we obtained access to their code repositories so we

could run their applications and explore their behaviors. If we were unable to run

the student application locally, we looked at the team design documents and the

application code to determine the behavior of the application. For each project, we

developed any missing concepts in order to replicate the behavior of the original

student application. We replicated only the core functionality, omitting behavioral

details that are not essential to the working of the application. We didn’t use any of

126

Table 8.1: Student projects we replicated in Déjà Vu

Application Purpose LoC

Accord Support musical bands in the selection of setlists 8,671 †

ChoreStar Make it easy for parents to assign chores to children 3,183 *

EasyPick Recommend classes to college students 3,161 *

GroceryShip Facilitate peer grocery delivery between students 4,996 *

Lingua Develop language skills by chatting with native speakers 4,639 †

Listify Crowdsource opinion-based rankings of anything 5,876 †

LiveScorecard Provide a live leaderboard for climbing competitions 8,742 †

MapCampus Allow students to plan events on campus 3,807 †

Phoenix Help people discuss mental health and make friends 7,062 *

Potluck Help people plan parties where guests bring supplies 4,344 †

Rendezvous Plan public events on campus 4,498 ‡

SweetSpots Mark spots on a map and review spots added by others 3,898 †

The symbols next to the code count indicate the front-end library used: †React v15, *Handlebars
v4, ‡Jade v1

the code written by students other than some HTML to provide page content such

as titles and some CSS to style the appearance of the application.

8.3 Study Subjects

The student projects are from the Fall ‘16 offering of the web programming course.

The 12 applications we replicated were selected independently by the teaching assis-

tants of the class as the best projects out of about 30 projects. The project selection

happened before we contacted students about using their projects to evaluate Déjà

Vu, and the teaching assistants of the course have no relation to our research project.

The student projects were mostly 4-person projects, done for 5 weeks, with each

student taking 10-20 hours per week. Thus, each project represents 200-400 person-

hours of work. The names of the student projects we replicated, together with their

purposes, are shown in Table 8.1. We also include the number of lines of HTML,

CSS, client- and server-side JavaScript code for the student implementations.1 For

1The count includes comments and blank lines. Unit tests are not counted.

127

building the user interface, 7 student projects used React2, 4 used Handlebars3 and 1

used Jade4. All projects implemented their server-side API in the REST architectural

style [16].

Students were allowed to use as many libraries, frameworks, and external web

API services as they wanted to. The requirements for the project were that it should

be a web application with client- and server-side code and a database, that solves

a plausible problem, and that has more than just basic CRUD functionality. The

number of lines of code of the project was not part of the evaluation criteria and

students had no incentive to produce more code than the minimal amount of code

necessary to implement their project proposal.

8.3.1 Project Descriptions

A description of the 12 student projects is included below:

• Accord. In Accord, users can create a group and invite other users to join.

Within a group, users can create new setlists, propose songs, and rate and

comment on proposed songs. Only the group creator can create new setlists,

but any group member can propose, rate and comment on songs. Only the

members of a group have access to the group’s setlists and songs.

• ChoreStar. In ChoreStar, there are two kinds of users: parents and children.

Parents create accounts for their children, and can create rewards and chores

for their children. Both rewards and chores have a monetary value: when the

child marks a chore as completed and the parent approves the completion of the

chore, the child earns the amount of money the chore is worth and can use that

money to buy rewards. The money is not real money: the currency is called

“stars” and it is only used within the application to track balances.

• EasyPick. In EasyPick, users can review a course they took along various

dimensions, such as grading fairness and course load. Users can also search and
2https://reactjs.org/
3https://handlebarsjs.com/
4http://jade-lang.com/

128

https://reactjs.org/
https://handlebarsjs.com/
http://jade-lang.com/

filter courses based on ratings. The application can recommend courses to a

user based on their reviews.

• GroceryShip. In GroceryShip, users can request items, such as groceries, to be

delivered to their dorm. Users input an expected price for the items and specify

the tip they will be paying on delivery. Other users can claim delivery requests

and buy and deliver the items. Upon delivery, the user doing the delivery is

paid for the items, plus the tip.

• Lingua. In Lingua, users can fin pen pals that are learning a new language and

chat. In a chat room, users can select a word or phrase the other user wrote and

suggest a correction. Users can also rate their conversation, which determines

the rating of the other user in the conversation.

• Listify. In Listify, users can submit lists of items and rank them in order of

preference. For example, a user could create a new list of basketball players

and submit five famous players. Users can rank the players and see what the

consensus ranking is. Users can also upvote/downvote lists and close the voting

on lists so that no new rankings are submitted.

• LiveScorecard. In LiveScorecard, users can create climbing competitions and

add other users to the competition as climbers. The competition creator can

add new climbs to the competition and assign the climbs a score. Climbers can

log in to the system, record the number of times they fell while completing a

climb and mark the climb as completed. The competition score of a climber is

determined by the points of the completed climbs minus the number of falls. To

log in to a competition, a climber uses a code that is unique to them and that

is given to them by the creator of the competition. The climb competition is

also identified by a unique code. Spectators can log in to the application with

the climb competition code and look at the competition scorecard.

• MapCampus. In MapCampus, users can create groups and create events for a

group. Only members of the group can see the events of that group. Group

129

administrators can invite other users to a group. Users can also choose to leave

a group if they want to.

• Phoenix. In Phoenix, users can find other users to meet and chat about various

topics. Users create a profile by specifying their time availability and a set of

topics they are interested in discussing. The application recommends users with

overlapping topic interests. A user can express interest to chat with another

user. If both users express interest in each other they are matched and can

communicate via email to find a time to meet.

• Potluck. In Potluck, users can create potluck events and invite other users to

the event. Guests to the event can add new supply requests and claim supplies.

Each supply has a description and quantity. For example, a supply request can

be 2 bottles of diet coke. A user can choose the quantity of a supply to claim.

For example, a user could claim to bring only 1 bottle of diet coke and the other

bottle will appear as unclaimed.

• Rendezvous. In Rendezvous, users can create public events with a location, date

and time, and a set of tags. Users can view all events on a map, and mark which

ones they plan to attend. Users can also comment on events.

• SweetSpots. In SweetSpots, users can create new campus spots, such as a library

or a park. They can rate the spot and adds tags. Users can see all spots on a

map, add reviews to a spot, upvote/downvote another user’s review of a spot

and mark a spot as favorite. Users have a reputation score, which is determined

by the number of reviews the users submitted and the number of times the

review was upvoted/downvoted by users.

8.4 Study Replicas

We used Déjà Vu to replicate the core functionality of all 12 student applications. The

code for the Déjà Vu implementations of the student projects is available online.5 We
5 https://deja-vu-platform.com

130

https://deja-vu-platform.com

did not replicate behavior that was clearly anomalous and we did not replicate MIT-

specific functionality that would make our sample applications unusable to anyone

outside of the MIT community.

For example, in the login page of ChoreStar, the student implementation has a

button with a label “Click here if not redirected” for the end-user to click on it if the

automatic redirect that should happen after a successful log-in doesn’t work. This is

probably a bug in the student implementation that the students couldn’t fix by the

project due date. It would be silly for us to replicate the bug and add the button.

Instead, our Déjà Vu implementation of ChoreStar correctly redirects the user after

a successful login, and doesn’t include the redirect button. Behavior that we didn’t

replicate and that is less clear whether it is anomalous or not is discussed in detail

later in §8.7.

Five student projects use the MIT API for authentication and restrict the ap-

plication to MIT-students only. The student projects are EasyPick, GroceryShip,

Rendezvous, MapCampus, and SweetSpots. We could have replicated this function-

ality, but we chose not to so as to make our Déjà Vu implementations usable by

everyone and not just usable by people affiliated with MIT.

When discussing our study results we will mention and account for the functional-

ity differences between the student implementations and the Déjà Vu implementations

when applicable.

8.5 Modularity Analysis

In this section, we analyze how the Déjà Vu applications we built to replicate student

projects use the catalog. The applications in the suite, together with the number of

times they use a concept from the catalog, are shown in Table 8.2.

The median number of concept types used per applications is 𝑄2=6 (𝑄1=5.75,

𝑄3=8). The median number of concept instances used per applications is 𝑄2=9

(𝑄1=7.75, 𝑄3=10). Most applications use roughly the same number of concept in-

stances (𝜎=2.3). This is probably because all the student projects we replicated

131

Table 8.2: Concept usage in sample applications

Concept/application A
cc

or
d

C
ho

re
st

ar

E
as

yP
ic

k

G
ro

ce
ry

Sh
ip

Li
ng

ua

Li
st

ify

Li
ve

Sc
or

ec
ar

d

M
ap

C
am

pu
s

P
ho

en
ix

P
ot

lu
ck

R
en

de
zv

ou
s

Sw
ee

tS
po

ts

#
A

pp
lic

at
io

ns

#
In

st
an

ce
s

Authentication 1 2 1 1 1 1 1 1 1 1 1 1 12 13
Authorization 1 1 1 1 1 1 1 2 1 1 1 1 12 13
Chat 0 0 0 0 1 0 0 0 0 0 0 0 1 1
Comment 1 0 1 0 0 0 0 0 1 0 1 1 5 5
Event 0 0 0 0 0 0 1 1 0 1 1 0 4 4
Follow 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Geolocation 0 0 0 0 0 0 0 1 1 0 1 1 4 4
Group 1 0 0 0 2 1 3 1 0 1 1 0 7 10
Label 0 0 0 0 0 0 0 0 1 0 1 1 3 3
Match 0 0 0 0 0 0 0 0 1 0 0 0 1 1
Passkey 0 0 0 0 0 0 2 0 0 0 0 0 1 2
Property 5 3 3 3 2 2 4 3 2 2 2 1 12 32
Ranking 0 0 0 0 0 1 0 0 0 0 0 0 1 1
Rating 1 0 4 1 1 0 0 0 0 0 0 1 5 8
Schedule 0 0 0 0 0 0 0 0 1 0 0 0 1 1
Scoring 0 0 0 0 0 1 2 0 0 0 0 2 3 5
Task 0 1 0 0 0 0 1 0 0 0 0 0 2 2
Transfer 0 1 0 0 0 0 0 0 0 1 0 0 2 2

Concept Types 6 5 5 4 6 6 8 6 8 6 8 9
Concept Instances 10 8 10 6 8 7 15 9 9 7 9 10

132

took a similar amount of person-hours of work to develop, and are therefore roughly

equivalent in terms of complexity.

The median number of times a concept is used across projects is 𝑄2=3 (𝑄1=1,

𝑄3=5). The median number of times a concept is instantiated is 𝑄2=3.5 (𝑄1=1.25,

𝑄3=7.25). All of the applications require identification of users and preventing them

from accessing content they don’t own. Also, it is very common for applications

to need to store domain-specific fields. For example, a “description” for parties in

Potluck. Thus, Authentication, Authorization, and Property are the most used con-

cepts. The Property concept is the concept with the most number of instances. This is

because applications need an instance of Property for each kind of entity, and a given

application could have multiple entities. For example, in Accord, there are bands,

song suggestions, setlists, media links, and user profiles.

Chat, Follow, Match, Ranking, and Schedule are only used once. We do not think

it is because these concepts are too application-specific. For Chat, we think it might

be because it is challenging to implement, so only one of the winning student teams

risked doing so. With enough time, other projects might have ended up incorporating

such functionality. For example, Rendezvous might have created a group chat for each

campus event so that guests could talk.

Follow implements functionality that is very common in social media applications:

subscribing to a source of updates. For example, Twitter lets you follow other ac-

counts, and tweets from accounts you follow appear in your feed. Ranking lets users

rank items and show the aggregate consensus ranking of items. While this looks like

a rather specific concept, note that many applications for managing human resources

usually include functionality like this, so that managers and stakeholders can stack

rank employees to determine promotions.

Match and Schedule are only used in Phoenix. Phoenix’s functionality revolves

around matching users after they both expressed interest in each other and giving a

way for users that match to find a time to meet in person. While no other sample

application uses Match or Schedule, many applications, such as dating sites, have

133

matching functionality. And many productivity applications provide functionality

for scheduling meetings.

8.6 Effort Savings

To estimate and compare the difference in effort required to build the study applica-

tions with Déjà Vu compared to using standard general-purpose tools, we developed

a metric. The metric estimates, using lines of code, the effort savings from using Déjà

Vu to build an application instead of using general-purpose tools.

8.6.1 Metric Considerations

Concept Reuse

For estimating the cost of a Déjà Vu implementation, we include the cost of develop-

ing the concepts used in that application. Not doing so would be unfair to the student

implementations: while we regard the concept catalog as part of our platform, some-

one has to implement the concepts in the first place. On the other hand, a key benefit

of Déjà Vu is concept reuse. Once a concept is implemented, other applications can

use it. If two applications reuse the same concept, it would be unfair to add the

entire cost of developing the concept to each application. Thus, instead of looking

at each application in isolation, our metric considers the cohort of applications an

application is part of, and shares the cost of developing a concept equally among all

other applications in the cohort that reuse the same concept. For the purpose of

this case study, the cohort of applications is the 12 applications that are the subjects

of the study, and we compute and discuss the effort savings for each one of the 12

applications.

Library Reuse

The purpose of the effort-savings estimate is to quantify the effort savings you can

typically obtain from using Déjà Vu to develop an application instead of using general-

134

purpose tools. In general-purpose tools, effort savings come from reusing libraries and

frameworks. For our effort-saving estimates to be accurate, the student implementa-

tions must have, to some extent, exhausted all the effort-saving opportunities available

to them from library and framework reuse.

To investigate the extent to which student projects used libraries we: (1) counted

and analyzed the libraries and frameworks used in the student projects and, (2) for

each concept used by the Déjà Vu implementations, we searched the NPM package

registry for libraries and the web for web APIs to see if there are any libraries or

web APIs that the students could have used to implement concept functionality but

neglected to do so.

To obtain a list of the libraries and frameworks used in the student projects we

did the following. First, for each student implementation, we extracted the project

dependencies from the package.json file of the project. Then, for each dependency,

we read the package description in the registry to determine if the dependency was a

dependency that is only needed for local development and testing. If the dependency

was a development-only dependency, we didn’t include the dependency in the list of

libraries and frameworks used.

Table 8.3: Libraries and frameworks used in the student implementations

Package Name Description # Projects Weekly Downloads

body-parser Parse request bodies 12 11,180,379
express Server-side web framework 12 10,755,586
bcrypt6 Hash passwords 12 913,332
express-
session

Express session middleware 12 699,351

mongoose MongoDB object modeling 12 692,150
cookie-parser Cookie header parser 11 1,299,698
request HTTP request client 10 15,644,167
moment Date utilities 8 10,098,784
react Front-end library 7 6,237,933
request-
promise-native

HTTP request client 7 6,235,363

react-dom DOM library for React 7 5,540,051
Continued on next page

6Project count and weekly downloads also include bcrypt-nodejs and bcryptjs

135

Table 8.3 – continued from previous page

Package Name Description # Projects Weekly Downloads

react-router Routing library 7 2,637,139
nodemailer Send emails 7 928,400
uuid7 Generate UUIDs 6 22,599,384
lodash JavaScript utility library 5 25,413,041
morgan Request logger middleware 5 2,023,601
csurf CSRF token middleware 5 276,064
handlebars Template language 4 8,413,668
dateformat Date formatting 4 4,230,411
async Utility library for asyn-

chronous code
3 24,387,986

express-
handlebars

View engine for Express 3 115,419

bluebird Promise library 2 16,479,308
serve-favicon Serve a favicon 2 1,609,122
react-dnd8 Drag and Drop 2 855,788
passport Express authentication mid-

dleware
2 707,231

react-date-
picker9

Date picker 2 510,662

react-
bootstrap

Components library 2 487,525

passport-
local

Username/password au-
thentication

2 316,307

hbs View engine for Express 2 76,146
xoauth2 XOAuth2 token generation 2 31,924
email-
verification

Verify email sign-up using
MongoDB

2 74

querystring Node’s querystring module
for all engines

1 8,399,397

q A library for promises 1 8,042,685
dotenv Load environment variables

from a .env file
1 7,915,846

crypto-
browserify

Data encryption 1 7,139,963

xml2js XML to JavaScript object
converter

1 6,861,963

compression Compression middleware 1 6,583,978
underscore Functional programming

helper library
1 6,284,233

Continued on next page

7Project count also includes node-uuid. node-uuid was deprecated in favour of uuid
8Project count and weekly downloads also include react-dnd-html5-backend
9Project count and weekly downloads also include react-datepicker

136

Table 8.3 – continued from previous page

Package Name Description # Projects Weekly Downloads

amdefine Module loading utility 1 5,739,334
ejs Template language 1 4,644,990
redux State container 1 3,854,631
jsonwebtoken JSON-based access tokens 1 3,705,835
socket.io Realtime framework server 1 2,993,577
jquery Library for DOM operations 1 2,880,750
react-redux React bindings for Redux 1 2,806,391
bootstrap Front-end framework 1 2,051,794
redux-thunk Redux thunk middleware 1 1,662,471
mongodb MongoDB driver 1 1,495,625
js-cookie Cookie handling 1 1,222,481
redux-logger Redux logger 1 640,325
cron Execute something on a

schedule
1 577,647

jade Template language 1 580,40110

stripe Stripe API wrapper 1 390,778
sendgrid Email Service 1 373,154
react-copy-to-
clipboard

Copy-to-clipboard compo-
nent

1 316,937

immutability-
helper

Mutate a copy of data with-
out changing the original
source

1 315,441

leaflet Map component 1 276,189
react-
autosuggest

Auto-suggest component 1 263,390

nodemailer-
smtp-transport

SMTP transport for Node-
mailer

1 225,224

nodemailer-
wellknown

SMTP service configura-
tions

1 222,480

express-
validator

Express validator middle-
ware

1 150,913

react-cookie Universal cookies for React 1 136,081
connect-flash Session storage 1 124,488
react-dropdown Dropdown component 1 75,939
react-leaflet Map component 1 66,758
react-
bootstrap-
typeahead

Typeahead component 1 59,499

react-
autocomplete

Autocomplete component 1 56,257

redux-promise Redux promise middleware 1 52,897
Continued on next page

10The jade package was renamed to pug. The weekly downloads number shown is for pug.

137

Table 8.3 – continued from previous page

Package Name Description # Projects Weekly Downloads

fixed-data-
table

Table component 1 21,927

zipcodes Zipcode database library 1 8,960
react-stars Star rating component 1 6,661
mongoose-deep-
populate

Mongoose plugin to enable
deep population of nested
models

1 5,489

react-modal-
dialog

Launch modal dialogs 1 1,160

bootstrap-star-
rating

Star rating component 1 1,048

mongoose-
integer

Validate integer values
within a Mongoose Schema

1 504

react-router-
form

Forms for React 1 259

mongoose-q Mongoose with promises 1 208
likely Collaborative filtering and

recommendation engine
1 12

http HTTP client 1 deprecated

Table 8.3 shows each distinct software library and framework used in the student

implementations, together with a short description and the number of student projects

using the library or framework. To give a sense of how popular each package is, we

include the number of weekly downloads for each package as reported on the NPM

package registry11 as of January 27, 2020.

In total, the 12 student projects used 84 distinct libraries or frameworks. The total

number of times any library or framework was included is 227 and the average number

of inclusions per project is 19. Our count is a conservative estimate for the number

of libraries and frameworks used by students because there could be dependencies

that are not listed in the package.json file. For example, some projects include the

Google Maps widget by adding some JavaScript code within an HTML file.

As shown in Table 8.3, students used popular front-end libraries and frameworks

like React, Jade and Handlebars; popular server-side web frameworks and server-
11https://www.npmjs.com/

138

https://www.npmjs.com/

Table 8.4: Libraries providing some concept functionality

Concept Client-Side Functionality Server-Side Functionality

Authentication react-loginform passport
Authorization react-ability node-authorization
Chat react-chat-elements
Comment react-commentbox
Event js-year-calendar
Follow
Geolocation google-map-react
Group
Label
Match
Passkey
Property angular-schema-form
Ranking
Rating react-stars
Schedule angular-calendar
Scoring
Task
Transfer

side utility libraries like Express; numerous client-side components for implementing

functionality such as ratings, forms, modals, tables and drag-and-drop functionality;

several utility libraries for handling dates and sessions; and several libraries for data

management and authentication.

Could students have used more libraries? To answer this question, we looked at

each concept in our catalog and searched the NPM package registry for libraries that

provide similar functionality to the client- or server-side functionality provided by the

concept.

Table 8.4 shows the results of our search for existing concept functionality. Each

table cell contains the name of the library we found that provides some client- or

server-side concept functionality. If we found more than one library for a concept

functionality, we only show the one that appears to be the most complete and pop-

ular. An empty cell indicates that we were unable to find a library for that concept

functionality.

139

The results suggest that students wouldn’t have been able to do much better in

terms of library reuse, because for many concepts, such as Task and Transfer, there

are no libraries available that implement the concept functionality. It is only when a

concept has a widget with rich behavior, such as a calendar widget, that there exists a

client-side library that implements such functionality. And it is only when the concept

has complex server-side functionality, such as authenticating users or implementing a

role-based authorization mechanism, that there exists a server-side library that can

help implement such functionality. Also, for the cases in which a complex widget

or complex server-side behavior is required, many student projects already use the

same library we found or an equivalent one. For example, as shown in Table 8.3, for

implementing client-side geolocation functionality student projects use leaflet and

react-leaflet, for client-side rating functionality they use bootstrap-star-rating

and react-stars, and for server-side authentication functionality they use passport

and passport-local.

Why is it that for 9 of the 18 concepts there appears to be no libraries that im-

plement the client- or server-side functionality of the concept? We think it is because

there is not much value in having a library for only the client- or server-side function-

ality of these concepts. For example, the Task client-side behavior consists of a set

of components for creating and showing tasks with a due date, assigner and assignee.

These components don’t add much beyond what could be quickly implemented by

writing custom code using a component library like Angular Material. The value of a

concept, as we’ve seen in §4.4, comes from the fact that it is a full-stack abstraction

and that as a result it encapsulates, among other things, client-server integration code

such as subscribing to events and writing event handlers, aggregating client-side data

to send a request, handling client-server communication, and processing the compo-

nent requests server-side. If a concept functionality is broken down into separate

client- and server-side libraries, then the concept has lost most of its value, and the

libraries are typically not be very valuable on their own.

140

Regarding web APIs, we only found full-stack APIs that implement functionality

similar to Authentication and Authorization (Auth012), Chat (TalkJs13) and Comment

(Disqus14). Perhaps student implementations that include such functionality could

have saved some lines of code by switching to a web API, but note that for Authentica-

tion and Authorization at least, there are several server-side libraries that the student

projects are already using, and the switch to a web API might therefore provide only

marginal gains—especially because the authentication and authorization functional-

ity in the student applications is a simple username/password authentication system

that is well-supported by popular libraries.

8.6.2 Effort Savings Metric

Metric Definition

The metric divides the size of the Déjà Vu implementation of an application by the

size of the student implementation. The size of the Déjà Vu implementation is the

size of the Déjà Vu code, plus the size of the concept implementations used in the

application. Since concepts are reused in multiple applications, we divide the size of

a concept implementation by the number of times the concept is used by different

applications in the cohort. To account for differences in languages, frameworks and

functionality between the student and Déjà Vu implementations we introduce two

adjustment factors. The metric is defined as follows:

ES(𝑎,𝒰) =

LoC(𝑎𝑑𝑣) +
∑︁

𝑐∈ 𝑎 .𝒰

𝑓𝑡𝑒𝑐ℎ × LoC(𝑐)

|𝒰 . 𝑐|
𝑓Δ × LoC(𝑎𝑠)

The parameter 𝑎 represents the application being considered, 𝑎𝑑𝑣 is the Déjà Vu

implementation of application 𝑎, and 𝑎𝑠 is the student implementation of application

𝑎. The parameter 𝒰 is a relation that includes an (𝑎, 𝑐) pair if application 𝑎 uses

concept type 𝑐. |𝑆| denotes the cardinality of set 𝑆, and the dot a relational join.

12https://auth0.com/
13https://auth0.com/
14https://disqus.com/

141

https://auth0.com/
https://auth0.com/
https://disqus.com/

Therefore, 𝑎 .𝒰 is the set of distinct concept types used in application 𝑎 and |𝒰 . 𝑐|

is the number of times a concept type 𝑐 is used by applications in 𝒰 . The function

LoC(𝑝) computes the lines of code in program 𝑝, without counting unit tests. The

count includes comments and blank lines.

The metric includes two adjustment factors, 𝑓𝑡𝑒𝑐ℎ and 𝑓Δ, whose values are given

later. The 𝑓𝑡𝑒𝑐ℎ factor accounts for differences between the languages and frameworks

used in our concepts compared to those used in the student implementations. The

𝑓Δ adjustment factor accounts for differences in functionality between the Déjà Vu

and student implementations. In practice, each application would have its own set of

factor values, but we simplify and use the same factor values for all applications since

we don’t expect the minor variations between the application-specific factor values to

make a significant difference in the estimate.

Metric Interpretation

In this metric, any number less than 1 indicates a positive outcome of using Déjà

Vu to build the application, instead of using general-purpose tools. Since the metric

shares the cost of implementing a concept with all the applications that use the same

concept, there are some cases in which the real effort of using Déjà Vu as perceived by

a developer could differ from the metric estimate. For example, if none of the concepts

required by an application are readily available in the catalog, the developer would

have to pay the cost of developing them all from scratch. Even if the developer expects

those concepts to be reused by multiple applications, the developer is still doing all of

the implementation work. Moreover, if the developer reusing the concepts is different

from the original developer that developed them, then the original developer wouldn’t

be the one experiencing the subsequent effort savings. On the other hand, a developer

might be able to find all the functionality they need in the catalog, and build a very

complex application without implementing any concept.

142

8.6.3 Adjustment Factor Values

The values of the adjustment factors were chosen based on our observations of the

student implementations and our Déjà Vu implementations, and are further explained

below.

Technology Differences. The 𝑓𝑡𝑒𝑐ℎ adjustment factor accounts for the technology

differences between the Déjà Vu implementations and the student implementations.

Our concept implementations use TypeScript, Angular, and GraphQL, while the

student implementations use JavaScript, React, Handlebars or Jade, and REST. Code

written in TypeScript, which is a syntactical superset of JavaScript that adds optional

static typing, tends to be longer than the equivalent JavaScript code because of the

extra type annotations. Angular is generally more verbose than React, Handlebars

or Jade, which were the libraries used by students. Using GraphQL instead of REST

typically leads to longer server-side code. This is because GraphQL requires the

developer to define and implement a resolver function for each field on each type,

while REST requires a developer to define a function for each endpoint and there

are usually less REST endpoints than resolver functions. In GraphQL, a developer

has to also define a GraphQL schema, but we don’t adjust for the schema definition

because our lines of code measure does not include the schema file. By observation

of the student code and the equivalent concept code, we estimate that, on average,

all these differences in technology result in concept code being 10% longer than the

equivalent student implementation code. Hence, we normalize the concept code by

multiplying it by 90% and use 𝑓𝑡𝑒𝑐ℎ = 0.9.

Functionality Differences. The 𝑓Δ factor accounts for the differences in func-

tionality between the student implementations and the Déjà Vu implementations. By

interacting with the student and Déjà Vu implementations and observing the differ-

ences in functionality, we estimate that, on average, the student implementation has

10% more end-user functionality than the corresponding Déjà Vu implementation.

This extra functionality in the student implementations corresponds to the non-core

143

Table 8.5: Déjà Vu effort savings

Application
LoC of
Déjà Vu

Implementation

Adjusted LoC
of Used

Concepts

Adjusted LoC
of Student

Implementation

Effort
Savings
Estimate

Accord 1,018 830 7,803 0.237
ChoreStar 600 1,487 2,865 0.728
EasyPick 771 669 2,845 0.506
GroceryShip 838 522 4,496 0.302
Lingua 630 1,298 4,175 0.462
Listify 1,047 1,323 5,288 0.448
LiveScorecard 1,429 2,075 7,868 0.445
MapCampus 834 947 3,426 0.520
Phoenix 1,165 3,384 6,356 0.716
Potluck 971 1,210 3,910 0.558
Rendezvous 1,502 1,401 4,048 0.717
SweetSpots 761 2,638 3,508 0.969

functionality we did not replicate. Hence, we normalize the student implementation

code by multiplying it by 90% and use 𝑓Δ = 0.9. In the future, we plan to refine this

number by counting the lines of code in the student implementations that correspond

to the functionality we didn’t replicate.

8.6.4 Results

The values of the effort savings metric ES for all applications in the case study are

shown in Table 8.5. For each application, we also show the lines of code of the Déjà

Vu implementation (LoC(𝑎𝑑𝑣)), the adjusted lines of code of the used concepts (the

sum Σ), and the adjusted lines of code of the student implementations (𝑓Δ×LoC(𝑎𝑠)).

For the adjustment factors we use 𝑓𝑡𝑒𝑐ℎ = 𝑓Δ = 0.9 (§8.6.3).

Results Discussion

The results show an estimated effort savings from using Déjà Vu in all 12 applications.

The applications for which there were important effort savings have in common the

fact that they: (1) instantiate the same concept multiple times, and that (2) most

of the other concepts they use are widely used concepts. For example, in Accord

144

(ES=0.237), most of the effort gains probably come from the reuse of Property. Much

of the functionality in Accord is CRUD functionality of different types of entities:

group bands, setlists, songs, and so on. While the student implementation has spe-

cialized code to deal with the CRUD functionality of each entity type, in Déjà Vu

the same functionality is implemented by including and configuring the same generic

Property concept multiple times. It also helps that the other concepts used in Accord—

Authentication, Authorization, Comment, Group and Rating—are concepts that are

widely used by other applications so the cost of the included functionality is shared

by multiple applications.

For applications in which the estimated effort savings were less, it is because there’s

one or more concept that the Déjà Vu implementations are using that are not reused

as much. For ChoreStar for example, it is because Task and Transfer are relatively

expensive concepts: they are among the concepts with the most lines of code and they

are only reused twice. The number is worse in SweetSpots because of the contribution

of the Follow concept, which is not used in any other application. However, the

follow concept implements more functionality than what we use in SweetSpots. In

SweetSpots, we use Follow only partially as a way for allowing users to save favorite

spots. The Follow concept provides, in addition to letting sources follow a target,

functionality for targets to post messages and has components to get all messages of

targets a sources follow.

Total Effort Savings

The total number of lines of code in all Déjà Vu implementations of the study ap-

plications is 11,566. The total number of lines of code in the concepts, adjusted by

𝑓𝑡𝑒𝑐ℎ, is 18,183. Therefore, the total number of lines of code that were required to

implement all 12 applications in Déjà Vu is 29,749. In contrast, the total number of

lines of code in all the student implementations, adjusted by 𝑓Δ, is 56,590. In total,

using Déjà Vu to replicate all 12 applications resulted in 26,841 less lines of code or

47.43% less code.

145

Note how with only 12 applications, we are already past the effort break-even

point, with an 47.43% savings in total and per-application effort savings on all 12

applications. If more applications of the same kind are developed, the improved

concept reuse would deliver even further gains. If we ignore the code of the concept

implementations, using Déjà Vu to implement the 12 applications resulted in 79.56%

less code.

8.7 Quality Analysis

In this section, we discuss and compare the quality of the Déjà Vu and the stu-

dent implementations. We focus our analysis on usability (§8.7.1) and briefly discuss

performance (§8.7.3), security (§8.7.2), and other quality attributes (§8.7.4).

8.7.1 Usability

ISO/IEC 29110 [27] defines usability as the degree to which an application can be

used by users to achieve specified goals with effectiveness, efficiency and satisfaction

in a specified context of use. In general, according to an informal heuristic evaluation

we conducted on the student and the Déjà Vu applications, we have found Déjà Vu

applications to be more usable than the student implementations. Needless to say,

the students only had a limited amount of time to implement their application and,

with enough time, could have detected and fixed many of the issues discussed below.

But we think that the way Déjà Vu applications are built may reduce the likelihood of

making the following kinds of usability errors: having a concept that doesn’t satisfy

usability and behavioral principles, having a concept with an internal inconsistency,

partially implementing a concept, and coupling concepts.

Anomalous Concept

We have found several examples of concept implementations that don’t satisfy well-

known usability and software behavior guidelines. Take, for example, the concept of

authentication that lets users register and sign in. It is good practice for applications

146

(a) MapCampus

(b) Phoenix

Figure 8-1: An error in the implementation of the authentication concept: special
symbols are not allowed, which forces the user to choose a less secure password

to enforce minimum password strength requirements. For example, the National

Institute of Standards and Technology (NIST) recommends setting a minimum of 8

characters and allowing, but not necessarily requiring, the use of special characters

[21]. However, in the student implementation of Potluck, EasyPick and Chorestar,

there’s no minimum password length requirement. A user can, if they choose so,

register an account with a one-letter password. In MapCampus and Phoenix, users

are not allowed to use special symbols in their passwords (Fig. 8-1), which forces them

to choose a less secure password.

There are also other usability problems in the student implementations of the

authentication concept. For example, usability guidelines state that error messages

should provide constructive advice on how to fix the problem and that error messages

should be visible.15 For example, it is good practice to show an error message close to

the invalid input, since users look at the area with the form fields first. However, in

the student implementation of Listify, while there appears to be a minimum length

15https://www.nngroup.com/articles/error-message-guidelines/

147

https://www.nngroup.com/articles/error-message-guidelines/

Figure 8-2: An error in the implementation of the authentication concept: if a user
enters a short password, the error message doesn’t say the minimum required length

requirement, the number is never revealed to the user: if the user inputs a password

that is too short, the error message only says “please select a longer password!” (Fig. 8-

2). Also, the error message appears at the bottom of the page, instead of appearing

on the form where the error is. In Phoenix, if the user includes an invalid character in

the password, the error message only says “Password has invalid characters” (Fig. 8-

1) and doesn’t provide any hints as to what the password requirements regarding

valid/invalid characters might be.

While the typical implementation of upvoting/downvoting allows a user to up-

vote/downvote the same item only once, in SweetSpots a user can upvote/downvote

the same review multiple times. As a result, a malicious user can boost or destroy an-

other user’s reputation score by upvoting/downvoting a same review multiple times.

This is probably not a behavior the students wanted, and instead represents a bug in

the implementation of the scoring concept.

Internally Inconsistent Concept

Sometimes the usability problem with a concept is not that it doesn’t abide by good

practices, but it is instead because of an internal inconsistency. For example, in the

148

(a) A climbing competition organizer can input an upper-cased code for a competition

(b) A climber or spectator can’t input an upper-cased competition code and it is thus
impossible for a climber or spectator to log in to a competition that has an upper-cased
code

Figure 8-3: An error in the implementation of the passkey concept caused by an
internal inconsistency

login page of LiveScorecard, the input text is lower-cased, presumably, for styling

purposes (Fig. 8-3): it is impossible for the user to input uppercase text in any of

the form inputs. The problem is that when a climbing competition organizer creates

a climbing competition, the form allows the organizer to input a code in upper case.

If the organizer does so, then no climber or spectator can log in to the climbing

competition, because it is impossible to input an upper-cased code in the login page.

Concept Coupling

Sometimes, a student implementation couples different concept actions together that

would be better left separate. In Accord for example, there is a form that allows

logged-in users to update their profile or password (Fig. 8-4). The problem is that

the same form is used for two different actions: changing the password and updating

149

Figure 8-4: A coupling of actions from two different concepts: user profiles and
authentication

profile information. The form is coupling two different concepts: authentication and

user profile. As a result of doing so, it is hard to guess from the user interface what

would happen if the user only wants to update their first name only. Can the user

leave the change password field blank? It turns out that the user can indeed leave

the change password field blank if they only want to update profile information, and

if they do then the password is not changed. It is only if the password field is not

blank that the application attempts to change the password and show an error if, for

example, the confirm new password field is blank.

In EasyPick, users can review a course along various dimensions, such as grading

fairness and overall satisfaction. But some of these dimensions are perhaps not meant

to be reviews at all, and are instead meant for collecting data on other aspects of the

class, such as how many hours the student spent outside of class studying. The user

interface however, shows the same user interface widget, a slider, both for giving a

rating and for inputting a value (Fig. 8-5). For “outside hours”, for example, is the

user supposed to input the number of hours a week they spend studying outside of

class? Or is it supposed to be a rating of the after-class load? Perhaps all of these

150

Figure 8-5: A potential coupling of two concepts

are meant to be reviews, and the problem is that the text labels are wrong, which

would make this design error an example of an anomalous concept implementation.

For example, instead of “class hours”, perhaps it should say “pace is reasonable”. Or

maybe what is going on is that the implementation is coupling two different concepts:

rating and data collection.

Concept Partially Implemented

Finally, we found examples in which a concept is partially implemented and it is thus

lacking some basic functionality. For example, in Phoenix, when two users match

because they have expressed an interest in meeting each other, the application lets

the user write a message to their match. You would expect the application to let

users send messages back and forth with their match from within the application, but

it doesn’t. The message is written within the application, but it is sent via email,

151

and no record of the message is left in the storage of the application itself. Perhaps

the students wanted to build a messaging system within the application but didn’t

have enough time, so they ended up with functionality that is almost a message inbox

with email notifications, but not quite.

Comparison with Déjà Vu

Concept reuse in Déjà Vu helps make usability problems caused by an anomalous

or inconsistent concept implementation less likely. The fact that all applications use

the same concept increases the number of end-users exposed to the same concept

implementation. And once a usability problem in a concept implementation is fixed,

it is available to all applications using the concept.

It is unlikely that a client-side framework or server-side library would help a de-

veloper prevent errors like the ones we mentioned. For one, preventing errors like

the ones we mentioned requires both client and server-side functionality working in

tandem. For example, the password policy has to be consistently applied client- and

server-side. And it requires domain knowledge. For example, the reason why upvot-

ing/downvoting should be allowed only once per user is because it is an implemen-

tation of the concept of upvoting. Many user interface tool-kits include thumbs-up

or up-arrow buttons, which are commonly used for upvoting. But it is still up to

the developer to implement, correctly, the domain-specific behavior of increasing an

item’s vote count whenever a user clicks on the upvote button, but only if the user

hasn’t upvoted the item yet.

In Déjà Vu, concepts are decoupled by default. The developer has to actively

couple them by synchronizing server-side actions and specifying bindings to get com-

pound behavior. Since concepts are decoupled by default, it is less likely for a devel-

oper to couple them by accident. For example, the update password functionality and

update user profile functionality is implemented in different concepts. The update

password functionality is part of Authentication and to save user profiles a developer

would use Property. In Déjà Vu, to build a form like the one in the student implemen-

tation of Accord, the developer has to synchronize the change-password component

152

Figure 8-6: Update profile in the Déjà Vu implementation of Accord

of Authentication with the update-object component of Property, include gen-id,

and so on. The easiest thing for the developer to do is to keep them separate and

not synchronize change-password with update-object. In the Déjà Vu implementa-

tion of Accord we kept change-password and update-object separate. As a result,

two separate forms appear to the user (Fig. 8-6), and it should be more clear to

the end-user that it is possible to update profile information without changing the

password.

Finally, it is less likely to have a concept partially implemented in a Déjà Vu

application. This is because a concept must have all the basic functionality to satisfy

its purpose, and once a developer includes a concept in the application, adding concept

components to the application so that the concept is fully-implemented doesn’t require

as much effort as building the functionality from scratch using general-purpose tools.

153

8.7.2 Security

ISO/IEC 29110 [27] defines security as the degree to which an application protects

information and data so that persons or other products or systems have the degree of

data access appropriate to their types and levels of authorization. Common attacks

on web applications, such as SQL injection, cross-site request forgery (CSRF), and

cross-site scripting (XSS), are less likely in Déjà Vu applications. These attacks

are less likely in Déjà Vu because they are caused by implementation errors, such

as forgetting to sanitize user input. Concept reuse in Déjà Vu helps prevent these

common security attacks because, all other things being equal, having more people

use and test the same code helps identify implementation errors sooner.

A security problem we noticed in some Déjà Vu applications is that it is easy for a

developer to forget to protect actions with the authenticate component of Authen-

tication, especially because authenticate produces no visible change in the behavior

of the application. In most applications, users have to sign in, after which they are

redirected to some other page where they can perform operations only authenticated

users are supposed to perform. For example, in Chorestar, after a parent signs in,

the parent is redirected to the parent home, where it can create chores. During man-

ual testing, it is easy to assume that the actions are protected, since you can only

reach that page using normal traversal of the site if you are already signed in. But

if the authenticate component is not wrapped in a dv.tx with the component it

is supposed to protect, a malicious user can craft an HTTP request to perform the

action without authenticating. In this respect, however, Déjà Vu is no worse than

general-purpose tools. A developer using general-purpose tools must also remember

to authenticate user actions.

8.7.3 Performance

In the context of web applications, performance is an indicator of how well an ap-

plication meets its response time or throughput requirements [61]. In all student

implementations, the server functionality is implemented as a monolith and there is

154

therefore no need to run a transaction between different servers. In the Déjà Vu im-

plementations, the gateway runs a two-phase commit each time the end-user triggers

a transaction component. A transaction request, compared to a normal request, has

an extra cost because of the extra messages required to agree on whether to commit or

abort the transaction, which are unnecessary if no synchronization between different

servers is required.

The performance penalty of transactions is highly dependent on the way the de-

veloper chooses to deploy a Déjà Vu application. By default, our platform co-locates

on the same physical machine the concept servers of the application and the gateway.

Co-locating the concept servers and the gateway eliminates what could otherwise be

a long network round-trip to send requests between the gateway and concept servers

and mitigates the cost of transactions.

8.7.4 Other Quality Attributes

Availability and Scalability. Since a compiled Déjà Vu application is a standard

MongoDB-Express-Angular-Node.js application (§7.3), a developer can choose to use

popular platform- and database-as-a-service providers, which have very high avail-

ability and can be configured to scale automatically as user demand increases. Our

Déjà Vu implementations tend to make more HTTP requests than the student im-

plementations. This is because what would typically be only one request in a student

implementation to, for example, load all data of a page, might end up being multiple

requests in Déjà Vu because each concept component would send a separate request

unless the concept components are synchronized in a transaction. These extra re-

quests increase the load on the gateway, which means that more gateway replicas are

needed to support the same number of end-users than replicas of the server of the

corresponding student implementation. In Chapter 10, however, we discuss potential

improvements to our platform implementation to mitigate this factor.

Reliability. Concept reuse should help make a Déjà Vu application more reliable

than an application built with general-purpose tools because more end-users and

155

developers are testing the same concept code, which helps detect bugs faster than if

each developer builds the same concepts from scratch for each application without

sharing concept code.

Maintainability. A Déjà Vu application should be easier to maintain than an ap-

plication built with standard general-purpose tools, because a Déjà Vu application is

assembled from independent concept modules. Each concept can be understood and

modified in isolation from the rest of the application functionality.

8.8 Threats to Validity

A threat to internal validity is the fact that we, the authors of the platform, were

the ones that developed the Déjà Vu implementations of the student projects. Other

developers might have a harder time identifying good concepts and might end up

achieving a lower level of concept reuse. And then there are standard threats to

external validity from the bias introduced by the selection of the subjects of our

study. The subjects of our study are 12 applications developed by students for a

web programming course. Naturally, the applications are about things university

students are interested in, such as organizing social events and rating classes. Also,

students were time-constrained, which might have influenced the type of applications

they chose to develop. As a result, the applications we replicated may not be a

representative sample of the types of web applications developers want to build, and

our findings may not generalize to other types of web applications.

8.9 Summary

We summarize the results from our study by answering the original research questions:

RQ1. Is it possible to build a variety of non-trivial applications using Déjà Vu,

without building non-generic concepts that are specific only to a given application?

156

Our findings suggest that it is possible to build a variety of applications and

achieve a good level of concept reuse. We replicated the 12 student applications with

a total of 18 concepts. The median number of times a concept is used in the Déjà

Vu implementations of the study applications is 𝑄2 = 3 and the median number of

times a concept is instantiated is 𝑄2 = 3.5. Only 5 of the 18 concepts we developed

are used only once and the concepts, Chat, Follow, Match, Ranking, and Schedule, do

not appear to be application-specific.

RQ2. How does the effort required to build a Déjà Vu application compare to using

standard general-purpose tools?

In total, using Déjà Vu to replicate all 12 applications resulted in 48.13% less

code than the student implementations. For all 12 applications, the estimated effort

required to build the application using Déjà Vu was less than the estimated effort

required to build the same application with standard general-purpose tools. Since

the cost of developing a concept is shared among all the applications that use the

concept, if more applications of the same kind are developed, the improved concept

reuse would deliver further effort gains.

RQ3. How does the quality of Déjà Vu applications compare to those applications

built with standard general-purpose tools?

We have found several usability problems in the student implementations that we

believe would be less likely to occur when using Déjà Vu. For security, some common

security problems caused by implementation errors, such as XSS, might be less likely

in Déjà Vu because of concept reuse. But, in Déjà Vu, a developer must remember to

protect actions, when applicable, to prevent a malicious user from crafting a malicious

request. In terms of performance, the main difference between a Déjà Vu application

and a regular web application built using standard general-purpose tools is the cost

of transactions, but the cost can be mitigated by co-locating the gateway and concept

servers, which our platform does by default.

157

THIS PAGE INTENTIONALLY LEFT BLANK

158

Chapter 9

Related Work

In this chapter, we compare our approach to web application development to prior

work. Our approach contributes a new type of code unit or module—a concept—and

a new mechanism to put these units together—by sharing identifiers and synchroniz-

ing actions. We start by reviewing programming paradigms (§9.1) and architectural

patterns (§9.2) that are primarily concerned with the way that code is organized into

units of functionality, which can then be combined together through some compo-

sition mechanism. Then, we revisit the conventional approaches to web application

development (§9.3) and discuss other related work (§9.4).

9.1 Programming Paradigms

9.1.1 Object-Oriented Programming

Concepts and concept instances are roughly analogous to classes and objects. But

the components of a concept, unlike the methods of an object, have full-stack imple-

mentations that include visual representations and interactive widgets.

Composing two concepts could be seen as including the behavior associated with

one concept in the other and vice versa, and thus has some similarities to mixins

[6, 17] and traits [59, 14]. But in Déjà Vu, the extra behavior being included is

not necessarily orthogonal to the existing behavior since synchronizing components

159

intertwines these behaviors: running a concept action might also trigger some of the

included behavior.

9.1.2 Subject-Oriented Programming

In subject-oriented programming [24], a subject is a collection of states and behaviors

reflecting a particular view on a shared object. Each subject can separately define

and operate upon a shared object, without any subject being aware of the state and

behavior associated to the shared object by other subjects.

A subject is like a concept, but subject-oriented programming is concerned with

the decomposition of the same object into different subjects. In Déjà Vu, concepts

are, a priori, not talking about the same entities at all. It is only after they are

composed together that one can see concepts as providing different views over the

same entities connected by bindings.

In subject-oriented programming, subjects are composed via a composition rule,

which can specify arbitrary requirements for the composition, and require the imple-

mentation of a subject compositor. The subject compositor combines subjects in an

environment according to the rules. Adding new subjects to a composition requires

adding new rules and modifying the subject compositor. In Déjà Vu, the developer

determines the composition rule and the subject compositor of each application com-

ponent by deciding whether the application component is a transaction or regular

component, and by the property bindings.

9.1.3 Aspect-Oriented Programming

In aspect-oriented programming [31], the goal is to increase modularity by allowing

the separation of cross-cutting concerns such as logging. The approach is to separate a

program into core concerns that implement the basic functionality of the software, and

cross-cutting concerns, called aspects, that encapsulate functionality that is shared

by multiple core concerns. Aspects alter the behavior of core concerns by applying

additional behavior, called advice, at various points in the program called join points.

160

Viewed through an aspect-oriented programming lens, the concepts of a Déjà Vu

application are usually all core concerns. If there are join points, they would be

implicit in the synchronization of the transaction components.

9.1.4 Feature-Oriented Programming

Feature-oriented programming [3] is a programming paradigm for developing software

product lines. A software product line is a set of software systems that share a

common, managed set of features that satisfy the needs of a particular market segment

and that are developed from a common set of core assets in a prescribed way [66].

In spirit, software product line development tools are similar to Déjà Vu because,

in both cases, the developer assembles an application by combining pre-built software

assets. The difference is what the assets are and how they are put together. In Déjà

Vu, the software assets are concepts that are combined by declarative synchronization.

In feature-oriented programming, the software assets are features that are added to

a program in a predefined way.

While a concept can be viewed as a kind of feature, not every feature is a concept.

A feature may represent an entire collection of concepts. For example, the news feed

feature on Facebook includes concepts such as feed, comment, and likes. Or a feature

may represent a small increment of functionality that would be part of a concept.

For example, a password recovery feature, which would be part of the authentication

concept. Also, features in feature-oriented programming do not generally exist inde-

pendently of the base, and are included in a predefined way. For example, in AHEAD

[5], features are nested tuples of program deltas. When applied to a program, the

source code is transformed by applying the delta.

9.1.5 Event-Driven Programming

In event-driven programming [20], software components can publish or subscribe to

events, and the flow of the program is determined by these events. New software com-

ponents can add behavior to a system by subscribing to a particular event, without

161

requiring the modification of the software component that publishes it. Our imple-

mentation of Déjà Vu is event-driven: concept components announce eval/exec events

and are notified when it is time for them to eval/exec. But this is hidden from the

application developer; application components can’t announce events or have concept

components listen to arbitrary events.

9.1.6 Postmodern Programming

Our approach could be seen as an instance of postmodern programming [65, 45,

46] in that the programming effort involves primarily gluing existing parts together

rather than creating new ones. Contrary to other postmodern approaches, however,

our composition mechanism and language are homogeneous. The heterogeneity of

component implementations is encapsulated and not visible to the developer.

9.1.7 Behavioral Programming

In behavioral programming [23], an application consists of independent modules that

run in parallel and communicate via events. Modules in behavioral programming,

called behaviors, encapsulate a software scenario. A software scenario describes an

example of how one or more users interact with the application.

Behaviors are more granular than concepts, because there’s one behavior per soft-

ware scenario, while a single concept would support multiple scenarios. In behavioral

programming and Déjà Vu, modules can trigger, subscribe to, and block events. In

Déjà Vu, however, blocking an event is not something the developer can specify as a

means of controlling the flow of the program, but happens automatically when the

server-side action of a component fails.

Another difference is that in Déjà Vu each concept stands on its own: you can

combine a concept with another concept, but you can’t change the behavior of a

concept. Concepts always retain their core behavior and key properties. Behaviors

in behavioral programming are less isolated: all behaviors write to the same global

state and a behavior can block the execution of another behavior.

162

9.2 Architectural Patterns

9.2.1 Microservices

Microservices is a popular architectural style that structures an application as a collec-

tion of loosely-coupled software services that are independently deployable [44]. Mi-

croservices is an approach to service-oriented architecture (SOA) [15] that emphasizes

building services around business capabilities and using lightweight communication

mechanisms like HTTP.

A business capability usually involves more than one concept. Therefore, a mi-

croservice tends to aggregate more functionality than a concept. For example, an

e-commerce site using microservices might have a customer feedback service that ag-

gregates together reviews and ratings, while in Déjà Vu, reviews and ratings would

be separate concepts.

Another difference is that, in practice, microservices provide back-end function-

ality only. Even in those cases in which microservices are full-stack,1,2 developers

have to write complex code to coordinate between different services. In Déjà Vu, a

developer has only to specify what actions need to occur in a transaction, and Déjà

Vu will take care of coordinating between the different concept back-ends.

Déjà Vu can thus be viewed as an attempt to realize a microservices architecture

with full-stack microservices that are more granular, easier to combine, and generic

enough to be reused in multiple applications or in a single application multiple times.

9.2.2 Entity-Component-System

Entity-component-system (ECS) [1] is an architectural pattern used in the develop-

ment of computer games and other real-time interactive systems. In ECS, the raw

data of one entity is partitioned into multiple data units called components. Each

component encapsulates the data of only one aspect of the entity. The code that im-

1https://micro-frontends.org/
2http://scs-architecture.org/

163

https://micro-frontends.org/
http://scs-architecture.org/

plements certain functionality is located in a system, which can operate on multiple

components.

A concept component is like an ECS system in the sense that it implements

functionality that operates on the raw data of an entity. But, unlike a system, which

can operate on multiple aspects of the entity at the same time, a concept component

can only interact with one aspect of the entity. This is because a concept can’t

communicate with other concepts. An application component is perhaps more like an

ECS system because an application component can operate on more than one aspect

of the entity. But an application component, unlike a system, can’t operate on the

raw data of one aspect directly—it can only do so through a concept component.

9.3 Web Application Development

9.3.1 Content Management Systems

While plug-ins in content management systems are full-stack like concepts, getting

different plug-ins to work together can require the developer to write complex server-

side code. Concepts in Déjà Vu, on the other hand, can be composed declaratively

in HTML. Another difference is that plug-ins tend to be more coarse than concepts.

For example, a commenting plug-in might include user authentication functionality

so that users authenticate before creating comments. In Déjà Vu, authentication and

commenting functionality is implemented as different concepts.

Déjà Vu has no built-in support for content management, but one could develop a

set of concepts that would allow a developer to create an application with a separate

administrator page for managing content creation. The developer would have to

combine these concepts to build their own content management system, which would

be more work than using an off-the-shelf content management system, but could allow

the developer to implement custom workflows or include other functionality.

164

9.3.2 End-User Development Tools

End-user development tools typically allow the user to write custom data queries and

behavior, which our platform does not offer. But with an end-user development tool,

a developer has to write most of the end-user behavior. In Déjà Vu, a developer can

include a concept to quickly add a lot of end-user functionality to the application.

Popular tools for teaching programming, such as App Inventor [67] and Scratch

[54], provide a graphical environment for building applications using a blocks-based

programming language. As with end-user development tools, users can specify arbi-

trary behavior that might be impossible to specify in Déjà Vu, but, in contrast to

Déjà Vu, users still have to write all the code for the application logic and imple-

ment each concept anew. Also, since the goal of App Inventor and Scratch is to teach

computational thinking, building applications with these tools ought to resemble con-

ventional programming. Teaching programming is not a goal of Déjà Vu and building

applications with Déjà Vu bears little resemblance to conventional programming.

9.3.3 Web Frameworks

There are many software frameworks and libraries to support web development. Some

frameworks and libraries, such as Angular, React and Vue, focus on client-side pro-

gramming. Others libraries and frameworks, such as Rails3 and Django4, focus on

server-side programming instead. Full-stack frameworks, such as Meteor5, and tier-

less web programming languages, such as Links [10] and Ur/Web [8], provide support

for both.

The essential difference between web frameworks and Déjà Vu, is that web frame-

works are designed to be general-purpose and require the developer to write all the

logic of end-user behavior. The benefit is that any application can be built using

web frameworks and not just what can be built with the catalog. The drawback is

that each concept has to be implemented anew. Even if full-stack components imple-

3https://rubyonrails.org/
4https://www.djangoproject.com/
5https://www.meteor.com/

165

https://rubyonrails.org/
https://www.djangoproject.com/
https://www.meteor.com/

menting a particular concept such as those provided by Disqus for comments exist,

or if some elements of a concept implementation can be obtained from a library, a

developer still has to write complex client- and server-side code to fill in the missing

parts, or to integrate the functionality with the rest of the application.

Our template language is, by design, similar to popular template languages like the

Angular template language or React’s JSX. For example, components are included by

name as if they were standard HTML elements; and the user can bind an expression

to an input, which will recompute and update the target input property when data

changes. The difference lies in the fact that Déjà Vu components have an eval and

exec action, and that there are different types of components, transaction and non-

transaction components, that the developer can create to determine behavior without

having to write any JavaScript.

9.4 Other Related Work

9.4.1 Design Patterns

Concepts provide a recipe for implementing a solution that satisfies a particular pur-

pose. In this sense, they are related to Alexander’s design patterns [2], analysis

patterns [18], or the more implementation-centric patterns of object-oriented pro-

gramming [19]. Unlike these, concepts not only describe a solution but they make it

tangible: they embody the design pattern, and can be readily executed and combined.

The programmer’s apprentice project [56] includes a catalog of commonly recur-

ring structures in code, requirements, or other phases of software development. These

structures, like our concepts, capture and implement a common pattern. But our con-

cepts capture higher-level aggregations of behavior.

9.4.2 Federated Databases

Much work has been done in the database community on federated databases [60, 25]

that aim to map multiple autonomous database systems into one. Within a federated

166

database, a single query can access or mutate data that is distributed among multiple

database systems.

While one could regard a concept as a database with queries and an application

as a federated database, in federated databases, the databases are talking about the

same underlying entities; it is the representation that’s different. The purpose of

joining them is to have a complete view of those entities. In Déjà Vu, the entities of

concepts are different projections of behavior satisfying different purposes, which are

then bound together to achieve the effect of a domain-specific entity. Also, concept

components, unlike queries, have a visual representation.

Schema and ontology matching [53, 30, 9] focus on the problem of automatically

discovering a correct mapping between two schemas or ontologies. All these efforts

have a different purpose and are orthogonal to our work, since we are not concerned

with automatically discovering bindings. Instead, in Déjà Vu the bindings are pro-

vided by the developer to shape the behavior.

9.5 Summary

Other code units proposed by programming paradigms and architectural patterns,

whether they are objects in object-oriented programming or subjects in subject-

oriented programming, encapsulate a different kind of behavior and have a different

granularity than concepts. Closest to concepts are full-stack microservices, but to

integrate full-stack microservices the developer has to write complex code to inte-

grate different back-end services. In Déjà Vu, concepts are composed declaratively

in HTML and our runtime system automatically coordinates with concept servers to

run a transaction if necessary. Our mechanism of composing concepts by synchro-

nizing actions is perhaps closest to the way behaviors are composed in behavioral

programming. But in Déjà Vu, a developer cannot block events directly as a way to

specify control flow. Since concepts encapsulate larger aggregations of behavior, it is

not necessary for the Déjà Vu developer to have such fine-grained control on the flow

of the program.

167

THIS PAGE INTENTIONALLY LEFT BLANK

168

Chapter 10

Discussion

In this chapter, we propose possible directions for improving the applicability and

effectiveness of our approach (§10.1). We then discuss open questions (§10.2) and

conclude the thesis (§10.3).

10.1 Future Directions

10.1.1 Platform Improvements

There are several improvements to the implementation of our platform that would

make it easier for programmers to author applications and concepts; and other im-

provements we could implement to improve the performance of Déjà Vu applications.

Detecting Programming Errors

Type Errors. We could incorporate a static type system to Déjà Vu that would

enable our platform to detect a large class of errors at compile-time, and warn the

programmer accordingly. The inclusion of such system would have no impact on the

Déjà Vu programmer at all, who would still be able to write expressions without

having to include type annotations. Only changes to concept components would be

required. Concept components would now have to declare a type for each input and

output property. Since we use TypeScript to author components, most inputs and

169

outputs have type annotations already. Déjà Vu could then detect at compile time if

the type of a value produced by an expression doesn’t match the type of the input

the expression is bound to, or if an operator in a template expression is applied to a

value of the wrong type.

Deadlocks. We could also perhaps incorporate something like session types [26] to

detect statically if a required input was not given, or if there is a deadlock in an appli-

cation component. In Déjà Vu, it is possible to write code that causes the application

to freeze. This could happen if, for example, the programmer forgets an input/output

binding, or if the output of a component that is produced after a transaction is bound

to a required input of another component in the same transaction. Writing code that

freezes an application is perhaps more likely to happen in Déjà Vu than in application

development in general, because actions can block when they are triggered externally

and don’t have the inputs they need to run. Incorporating something like session

types would allow the platform to warn the programmer if the application will freeze

at run time. This would require changes in concept components, since they would

now have to specify what inputs are required and what outputs are produced as a

result of what actions, but could make Déjà Vu programmers more productive.

Missing Authentication Checks. To prevent the programmer from forgetting

to add the authenticate component to operations that should be authenticated,

we could analyze the application’s source code and warn the programmer if we find

some actions of a concept protected but not others. For example, in the style of [43],

we could warn the programmer if we find a create-score action protected, but a

delete-score not.

Allow Concept Authors to Use Other Front-End Frameworks

It would be ideal to make it possible for concept authors to use React or other

front-end frameworks or libraries other than Angular to develop components. This

might require a change in the runtime system so that the client-side synchronization

170

and input binding is not built atop Angular, or it might require us to find a way

to wrap components developed using other frameworks or libraries with an Angular

component.

Make It Easier to Integrate Third-Party APIs

Currently, for creating a concept that integrates a third-party API service, such as

Stripe1 for payments, programmers need to create a concept that wraps the API

service and implements transactions. We have yet to develop a library or, at the very

least, a set of guidelines that would make it easier to develop these wrappers.

Performance Improvements

Regarding performance, we could minimize the number of extra requests a Déjà Vu

application makes compared to an application developed using general-purpose tools.

Many components run their eval action to get data from their servers as soon as

they load. As a result, when a page first loads, many requests might be sent to the

gateway, at almost the same time. To minimize the load on the gateway, we could

have the client-side library wait until all components finish loading and batch all eval

requests into one compound request, which is then demultiplexed server-side by the

gateway.

To improve the performance of transactions, we could implement popular opti-

mizations to the two-phase commit protocol [58, 33], which would make the two-phase

commit code harder to implement in the gateway and concept servers but should de-

liver performance gains.

10.1.2 Easy Concept Authoring

In the current implementation of our platform, there is a big difference between the

effort and expertise required for assembling applications from predefined concepts and

building a concept. Building a new concept or modifying an existing concept is as

1https://stripe.com/

171

https://stripe.com/

complicated as building a web application using general-purpose tools. A programmer

has to deal with APIs, databases, and so on.

We can’t assume every programmer will always be able to find all the functionality

they need for their application in the catalog already, especially during the early stages

of the platform when the catalog is under development. It is therefore important for

the success of our platform to make it as easy as possible to author concepts. When it

comes to concept building, our efforts have focused on (1) developing tools and various

libraries so that building a concept is not much harder than building a conventional

web application using general-purpose tools, and (2) making the platform as agnostic

as possible to the technologies chosen by the programmer to build a concept. But

there is more that we could do to make it easier for programmers to author or modify

concepts.

First, we could make it easier for programmers to modify an existing concept.

A programmer might want to modify an existing concept by changing the code of

an existing component or server-side action, or the programmer might want to add

a new component or server-side action. Currently, any of these changes require the

programmer to develop a new concept by copying the existing concept and making the

code modifications. It should be possible to develop a mechanism for the programmer

to be able to write the code for a new component or server-side action, mark the new

code as belonging to a concept in the catalog and specify whether it should override

an existing component or action. Then the platform could apply the changes to the

concept. This is just like mixins in object-oriented programming [6, 17], but the

units of behavior being mixed-in, in this case, are components and server-side actions

instead of methods.

Finally, we could make it easier for end-user programming tools to integrate with

our platform so that programmers can use an end-user programming tool to build or

modify a concept, and then have the end-user programming tool export a component,

a server-side action, or perhaps even a whole concept that could be used in Déjà Vu.

172

10.1.3 A Graphical Environment

Motivation

While some programmers, especially those already familiar with HTML and CSS,

will prefer to develop Déjà Vu applications using the HTML-based language and

their favorite editor, we expect many other programmers to prefer a graphical envi-

ronment. After all, a graphical environment can, for example, prevent syntax errors

by making it impossible to create syntactically incorrect code, it can help with recall

by allowing the programmer to see concept and component information within the

environment, it can eliminate the edit-compile-debug cycle by giving the programmer

immediate feedback on the behavior of the application as it is edited [63], and it can

present visualizations that allow the programmer to better understand the behavior

of the application being developed. Moreover, Déjà Vu programming is well-suited

for a graphical environment because the configuration and composition of concepts is

amenable to graphical representations since concept components are graphical user

interface elements.

Together with the development of the platform, we have been developing such

an environment [41]. In this section, we summarize the work we have done on the

graphical environment so far and discuss future work.

Building Applications with the Déjà Vu Designer

The Déjà Vu designer is a desktop software application that allows a programmer to

build a Déjà Vu application graphically. In the designer, programmers can include

and configure concepts (Fig. 10-1), create new application components via drag-and-

drop, and bind inputs/outputs. To specify an input/output binding, the programmer

can input an expression in the input field or can drag-and-drop an output of a com-

ponent into the input field, which would automatically populate the input with the

corresponding expression code that uses the dragged output value (Fig. 10-2).

To help the programmer understand data flows in a component, the designer can

overlay input/output information next to child components. The input/output hints

173

Figure 10-1: Including and configuring concepts

Figure 10-2: Input/Output binding

174

Figure 10-3: Input/Output hints

Figure 10-4: Preview mode

175

appear next to components that have an output property that is used somewhere

else in the application component, or that have an input bound to an expression that

consumes an output from some other component (Fig. 10-3). Input/output hints are

color-coded by output.

The application under development is always running in the background. A pro-

grammer can interact with the application through the component currently being

edited on the canvas, or the programmer can switch to a preview mode that hides

the designer controls and shows the application as it would look like to an end-user

(Fig. 10-4). A Déjà Vu Designer application can be saved locally or it can be exported

into valid Déjà Vu application code that uses the HTML template language.

Design Decisions

There are three key ideas in the design of our graphical environment:

• Row-based layout model. The component canvas is broken down into rows

that contain one or more components. For arranging the layout of compo-

nents within a row, the Déjà Vu Designer leverages CSS flexbox2. Flexbox is a

one-dimensional layout model that offers space distribution between items and

alignment capabilities. In the Déjà Vu Designer, a programmer can specify how

free horizontal space is distributed in each row, how components are aligned

vertically, and whether each component should retain its initial size or stretch

to fill horizontal space.

Our row-based layout model is similar to the one used in Google Sites3. But

Google Sites breaks a row into 12 columns, and components are given a width

in terms of the number of columns they span. We think using flexbox works

better for Déjà Vu because the programmer can let concept components take as

much space as they want, and focus only on specifying how to distribute surplus

horizontal space and how to align components.

2https://www.w3.org/TR/css-flexbox-1
3https://sites.google.com

176

https://www.w3.org/TR/css-flexbox-1
https://sites.google.com

• Flat presentation. Application components can contain other application com-

ponents, and this containment can be arbitrarily deep. We have made the

decision to only allow a single application component to be edited at a time.

Application components contained by the application component being edited

are rendered but not editable. To edit a contained application component, the

programmer first needs to switch the canvas view to the contained application

component.

Anonymous components, which are supported by Déjà Vu’s template language,

are not supported in the Déjà Vu Designer. A programmer must explicitly create

a new component before being able to pass it as input to another component.

• Overlaid input/output hints. To display input/output hints we overlay the hints

onto the application component canvas. We could have instead created a new

view that shows a dataflow graph where nodes are components and edges data

flow—a standard visualization used in dataflow programming [12]. Our pref-

erence for overlaying hints onto the application canvas is to retain the canvas

view, which shows the spatial relationships between components and shows how

each component would appear to an end-user of the application.

Future Directions

Debugging Support. Our current implementation of the graphical environment

gives the programmer immediate feedback on the behavior of the application as it

is edited. This can help with debugging, since it makes certain programming errors

more evident. However, there is an opportunity to improve debugging support in the

Déjà Vu Designer by showing the state of input/output properties as the application

is run, and by allowing the programmer to modify the value of a property to see the

effect of doing so on the behavior of the application.

More Editing Projections. Our current implementation of the environment main-

tains internally a JSON representation of the application under development. As the

177

programmer interacts with the environment via drag-and-drop or by inputting an ex-

pression textually in an input box, the internal JSON representation of the application

is mutated. An editor or environment that follows this structure, in which there is

an abstract representation of a program that is edited through multiple projections,

is commonly referred to as a projectional or structured editor4.

Our current implementation, however, barely exploits this structure, since it pro-

vides only one projection for editing a Déjà Vu application: application components

can only be created visually via drag-and-drop and expressions can only be inputted

textually in an input box. More projections could be developed. For example, a pro-

grammer could benefit from being able to specify application components textually

using the Déjà Vu language from within the environment. And expressions could be

inputted using a graphical expression builder.

Testing and Experimentation. So far we have been the only users of the graph-

ical environment. Further testing and experimentation on the designer is required.

A benefit of having a graphical environment is that we can conduct a user study to

evaluate how easy it is for developers to use our approach to build web applications,

without having to find user study participants that are familiar with HTML.

10.2 Open Questions

Our work to date has focused on the development and validation of our approach

and on the implementation of a platform to support building applications in the new

style we propose. There are some open questions regarding the nature of the concept

catalog and the characteristics of applications for which Déjà Vu is well-suited for,

which we hope to be able to answer if the platform gains adoption and many more

applications are developed using Déjà Vu.

We previously discussed criteria for creating concepts (§7.4.2), but many questions

regarding the nature of the catalog remain open. For example, how many concepts

4https://martinfowler.com/bliki/ProjectionalEditing.html

178

https://martinfowler.com/bliki/ProjectionalEditing.html

are there? Hundreds, thousands, millions? Does concept usage follow a power law,

where relatively few concepts are widely used and there’s a long tail of barely used

concepts? Or would concept usage be more uniformly distributed? Our case study

results suggest that concept usage distribution might be closer to the power law, since

we have 3 concepts, Authentication, Authorization, and Property, that are used in each

one of the applications we replicated; a slightly larger set of 5 concepts, Comment,

Event, Geolocation, Group and Rating, that are widely used; and a long tail of 10

concepts, Chat, Follow, Label, Match, Passkey, Ranking, Schedule, Scoring, Task, and

Transfer, that are used much less than the others. But the concept usage distribution

might change as more applications are developed—especially, if the new applications

are very different from the kinds of applications we replicated in our case study.

The other set of open questions are related to the applicability of our approach.

What applications are better-suited for Déjà Vu? Can we develop measures of which

applications it will be more or less useful for? The metric we developed in our case

study (§8.6) suggests an answer to these questions: Déjà Vu is more useful for building

applications whose functionality can be easily split into multiple concepts that are

generic and common enough to be reused by other applications. But it doesn’t say

much about what types of web applications these are. For example, there might not

be much to gain from using Déjà Vu to build a web-based word processor like Google

Docs, because most of the complexity of a word processor is in the editor itself, which

would end up being one big concept.

Perhaps the best application of Déjà Vu is as a framework for creating software

product lines. To develop a software product line in Déjà Vu one would identify and

implement the relevant concepts for that software family, and then assemble each

individual application from these set of predefined concepts.

10.3 Conclusion

This thesis described a new approach to web application development and a new

platform called Déjà Vu that supports building applications in this new style. In

179

Déjà Vu, a programmer assembles an application from predefined concepts by writing

HTML and CSS, plus a small JSON configuration file. No client- or server-side

procedural code is required.

Concepts are full-stack units of behavior that encapsulate all the client and server-

side code required to support a motivating end-user purpose. Concepts export a set

of graphical user interface components with associated server-side actions, which the

programmer can include in their application and compose with other components by

synchronizing the server-side actions. To link different concept entities, a programmer

includes a built-in component that generates a unique identifier and provides the

generated identifier as input to the concept components on the page.

Results from a case study we conducted suggest that a variety of non-trivial ap-

plications can be built with Déjà Vu, without building application-specific concepts

that cannot be reused. Moreover, we have shown that concept reuse helps prevent

several kinds of usability problems, and that many applications can be built using

our approach with less effort than with conventional approaches to web application

development.

Building modern web applications with rich functionality is no easy task and

usually requires professional developers with advanced programming knowledge and

skills. We hope our platform will help programmers develop more usable applications

with less effort and make web application development more accessible. At the very

least, we hope to spur interest in making concept design and development a central

aspect of software development. Many authors have long recognized the centrality

of concepts, and the importance of conceptual integrity in product design [7, 47, 13].

Yet concept design and implementation don’t yet play the central role in application

development one might expect, and current languages and tools lack support for con-

cept encapsulation and reuse. By making concepts the building blocks of applications,

our platform emphasizes concept design and development, and allows programmers

to reuse all the design work done to invent and discover the right concepts.

180

Bibliography

[1] T. Alatalo. An entity-component model for extensible virtual worlds. IEEE
Internet Computing, 15(5):30–37, Sep. 2011.

[2] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Center for Environmental Structure Berkeley, Calif:
Center for Environmental Structure series. OUP USA, 1977.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer Publishing
Company, Incorporated, 2013.

[4] Maryam Archie. Creating a cliché library for social applications. Master’s thesis,
Massachusetts Institute of Technology, 2019.

[5] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise re-
finement. In Proceedings of the 25th International Conference on Software Engi-
neering, ICSE ’03, pages 187–197, Washington, DC, USA, 2003. IEEE Computer
Society.

[6] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the
European Conference on Object-oriented Programming on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA/ECOOP ’90, pages
303–311, New York, NY, USA, 1990. ACM.

[7] Frederic Phillips Brooks. The Design of Design: Essays from a Computer Sci-
entist. Addison-Wesley Professional, 2010.

[8] Adam Chlipala. Ur/web: A simple model for programming the web. In Proceed-
ings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 153–165, New York, NY, USA, 2015.
ACM.

[9] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.
SIGMOD Rec., 35(3):34–41, September 2006.

[10] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In Proceedings of the 5th International Conference on
Formal Methods for Components and Objects, FMCO’06, pages 266–296, Berlin,
Heidelberg, 2007. Springer-Verlag.

181

[11] Santiago Perez De Rosso and Daniel Jackson. Purposes, concepts, misfits, and a
redesign of git. In Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, pages 292–310, New York, NY, USA, 2016. ACM.

[12] Jack B. Dennis. First version of a data flow procedure language. In B. Robi-
net, editor, Programming Symposium, pages 362–376, Berlin, Heidelberg, 1974.
Springer Berlin Heidelberg.

[13] H. Dreyfuss. Designing for People. The Classic of Industrial Design. Allworth
Press, 2003.

[14] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and An-
drew P Black. Traits: A mechanism for fine-grained reuse. ACM Transactions
on Programming Languages and Systems (TOPLAS), 28(2):331–388, 2006.

[15] Thomas Erl. Service-oriented architecture: concepts, technology, and design.
Pearson Education India, 1900.

[16] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

[17] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and
mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’98, pages 171–183, New York,
NY, USA, 1998. ACM.

[18] Martin Fowler. Analysis patterns: reusable object models. Addison-Wesley Pro-
fessional, 1997.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[20] David Garlan and David Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In VDM’91 Formal Software Development Methods, pages 31–44.
Springer, 1991.

[21] Paul A. Grassi, Elaine M. Newton, Ray A. Perlner, Andrew R. Regenscheid,
William E. Burr, Justin P. Richer, Naomi B. Lefkovitz, Jamie M. Danker, Yee-
Yin Choong, Kristen Greene, and Mary F. Theofanos. Digital identity guidelines
– authentication and lifecycle management. Technical Report NIST SP 800-63B,
National Institute of Standards and Technology, 2017.

[22] Jim Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK, UK, 1978. Springer-Verlag.

[23] David Harel, Assaf Marron, and Gera Weiss. Behavioral programming. Commun.
ACM, 55(7):90–100, July 2012.

182

[24] William Harrison and Harold Ossher. Subject-oriented programming: A critique
of pure objects. In Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’93,
pages 411–428, New York, NY, USA, 1993. ACM.

[25] Dennis Heimbigner and Dennis McLeod. A federated architecture for information
management. ACM Trans. Inf. Syst., 3(3):253–278, July 1985.

[26] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In Chris
Hankin, editor, Programming Languages and Systems, pages 122–138, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[27] ISO Central Secretary. Systems and software engineering — systems and software
quality requirements and evaluation (square) — system and software quality
models. Standard ISO/IEC TR 29110-1:2016, International Organization for
Standardization, Geneva, CH, 2016.

[28] Daniel Jackson. Towards a theory of conceptual design for software. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!), Onward! 2015, pages 282–296, New
York, NY, USA, 2015. ACM.

[29] Daniel Jackson. Design by Concept: A New Way to Think about Software. In-
dependently published, 2019.

[30] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the
art. The knowledge engineering review, 18(01):1–31, 2003.

[31] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
ECOOP’97—Object-oriented programming, pages 220–242, 1997.

[32] Butler W. Lampson. Hints for computer system design. In Proceedings of the
Ninth ACM Symposium on Operating Systems Principles, SOSP ’83, pages 33–
48, New York, NY, USA, 1983. ACM.

[33] Butler W. Lampson and David B. Lomet. A new presumed commit optimization
for two phase commit. In Proceedings of the 19th International Conference on
Very Large Data Bases, VLDB ’93, pages 630–640, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc.

[34] Czarina Lao. Designing cliché authorship in the déjà vu web development plat-
form. Master’s thesis, Massachusetts Institute of Technology, 2019.

[35] Donald C Latham. Department of defense trusted computer system evaluation
criteria. DoD 5200.28-STD, 1986.

183

[36] Paul J Leach, Michael Mealling, and Rich Salz. A universally unique identifier
(uuid) urn namespace. RFC 4122, 2005.

[37] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. End-User
Development: An Emerging Paradigm, pages 1–8. Springer Netherlands, Dor-
drecht, 2006.

[38] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In
Proceedings of the ACM SIGPLAN Symposium on Very High Level Languages,
pages 50–59, New York, NY, USA, 1974. ACM.

[39] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. Object spreadsheets: A
new computational model for end-user development of data-centric web applica-
tions. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2016,
pages 112–127, New York, NY, USA, 2016. ACM.

[40] M. Douglas McIlroy. Mass-produced software components. In Peter Naur and
Brian Randell, editors, Software Engineering, Report on a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968,
1968.

[41] Barry A McNamara III. A graphical environment for déjà vu app development.
Master’s thesis, Massachusetts Institute of Technology, 2019.

[42] Kevin Mullet and Darrell Sano. Designing visual interfaces. Acm Sigchi Bulletin,
28(2):82–83, 1996.

[43] Joseph P. Near and Daniel Jackson. Finding security bugs in web applications
using a catalog of access control patterns. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 947–958, New York, NY,
USA, 2016. ACM.

[44] Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.

[45] James Noble and Robert Biddle. Notes on postmodern programming. In Pro-
ceedings of the Onward Track at OOPSLA, volume 2, pages 49–71, 2002.

[46] James Noble and Robert Biddle. Notes on notes on postmodern programming.
SIGPLAN Not., 39(12):40–56, December 2004.

[47] Donald Norman. The Design of Everyday Things. Basic Books, 2002.

[48] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, December 1972.

[49] David L. Parnas. Designing software for ease of extension and contraction. In
Proceedings of the 3rd International Conference on Software Engineering, ICSE
’78, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press.

184

[50] Santiago Perez De Rosso and Daniel Jackson. What’s wrong with git? a concep-
tual design analysis. In Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2013, pages 37–52, New York, NY, USA, 2013. ACM.

[51] Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and
Barry A. McNamara III. Declarative assembly of web applications from prede-
fined concepts. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, pages 79–93, New York, NY, USA, 2019. ACM.

[52] G. D. Plotkin. A structural approach to operational semantics, 1981.

[53] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic
schema matching. the VLDB Journal, 10(4):334–350, 2001.

[54] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S Silver,
Brian Silverman, et al. Scratch: Programming for all. Commun. Acm, 52(11):60–
67, 2009.

[55] John C. Reynolds. The discoveries of continuations. Lisp Symb. Comput., 6(3-
4):233–248, November 1993.

[56] Charles Rich and Richard C. Waters. The programmer’s apprentice: A research
overview. Computer, 21(11):10–25, November 1988.

[57] Clay Richardson and John R. Rymer. New development platforms emerge for
customer-facing applications. Technical report, Forrester Research, Inc., 2014.

[58] George Samaras, Kathryn Britton, Andrew Citron, and C. Mohan. Two-phase
commit optimizations and tradeoffs in the commercial environment. In Proceed-
ings of the Ninth International Conference on Data Engineering, pages 520–529,
Washington, DC, USA, 1993. IEEE Computer Society.

[59] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black.
Traits: Composable units of behaviour. In European Conference on Object-
Oriented Programming, pages 248–274. Springer, 2003.

[60] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.,
22(3):183–236, September 1990.

[61] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practi-
cal Guide to Creating Responsive, Scalable Software. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2002.

[62] Kevin J. Sullivan and David Notkin. Reconciling environment integration and
software evolution. ACM Trans. Softw. Eng. Methodol., 1(3):229–268, July 1992.

185

[63] Steven L. Tanimoto. VIVA: A visual language for image processing. Journal of
Visual Languages & Computing, 1:127–139, 1990.

[64] Lea Verou, Amy X. Zhang, and David R. Karger. Mavo: Creating interactive
data-driven web applications by authoring html. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, UIST ’16, pages
483–496, New York, NY, USA, 2016. ACM.

[65] Larry Wall. Perl, the first postmodern computer language. Speech at Linux
World, 1999.

[66] David M. Weiss and Chi Tau Robert Lai. Software Product-line Engineering: A
Family-based Software Development Process. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1999.

[67] David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. App Inventor.
O’Reilly Media, Inc., 2011.

186

	Introduction
	Motivation
	Thesis Statement
	Contributions
	Thesis Outline

	Conventional Approaches
	General-Purpose Tools
	Client-Side Programming
	Server-Side Programming
	Tierless Programming
	Full-Stack Components

	Content Management Systems
	End-User Development Tools
	Strengths and Limitations
	Summary

	Our Approach
	Concepts as Modules
	Full-Stack Services
	Declarative Synchronization
	Identifier Sharing
	Strengths and Limitations
	Summary

	Comparison with Conventional Approaches
	Rapid Inclusion of End-User Functionality
	Example Application: SecretParty
	Discussion

	Deep Integration of End-User Functionality
	Example Application: TopMovie
	Discussion

	Implementation of Custom Behavior
	Example Application: FamilyLog
	Discussion

	Benefits of Concept Modularity
	Summary

	Building Applications with Déjà Vu
	Including and Configuring Concepts
	Choosing Concepts
	Including Concepts
	Configuring Concepts
	Other Application Configuration

	Linking Components
	Including Components
	Synchronizing Components

	Building Reactive User Interfaces
	Specifying Security Policies
	Styling the Application
	Themes

	Customizing a Concept Implementation
	Summary

	Platform Semantics
	Introduction
	First Iteration: Components
	Definitions
	Concept Component Behavior
	Rules
	Initial Application Instance Configuration

	Second Iteration: Clients
	Definitions
	Concept Component Behavior
	Rules

	Third Iteration: Full Semantics
	Definitions
	Concept Component Behavior
	Rules

	Core Syntax and Translation
	Other Considerations
	Summary

	Platform Implementation
	Client-Side Library
	Event Dispatching
	Client-Server Communication

	Gateway Server
	Security
	Transactions

	Compiler
	Concept Catalog
	Authoring Concepts
	Criteria for Creating Concepts

	Summary

	Case Study
	Research Questions
	Method
	Study Subjects
	Project Descriptions

	Study Replicas
	Modularity Analysis
	Effort Savings
	Metric Considerations
	Effort Savings Metric
	Adjustment Factor Values
	Results

	Quality Analysis
	Usability
	Security
	Performance
	Other Quality Attributes

	Threats to Validity
	Summary

	Related Work
	Programming Paradigms
	Object-Oriented Programming
	Subject-Oriented Programming
	Aspect-Oriented Programming
	Feature-Oriented Programming
	Event-Driven Programming
	Postmodern Programming
	Behavioral Programming

	Architectural Patterns
	Microservices
	Entity-Component-System

	Web Application Development
	Content Management Systems
	End-User Development Tools
	Web Frameworks

	Other Related Work
	Design Patterns
	Federated Databases

	Summary

	Discussion
	Future Directions
	Platform Improvements
	Easy Concept Authoring
	A Graphical Environment

	Open Questions
	Conclusion

