
Declarative Assembly of Web Applications from
Predefined Concepts

Santiago Perez De Rosso
MIT CSAIL

Cambridge, MA, USA
sperezde@csail.mit.edu

Daniel Jackson
MIT CSAIL

Cambridge, MA, USA
dnj@mit.edu

Maryam Archie
MIT CSAIL

Cambridge, MA, USA
marchie@mit.edu

Czarina Lao
MIT CSAIL

Cambridge, MA, USA
mcslao@mit.edu

Barry A. McNamara III
MIT CSAIL

Cambridge, MA, USA
barryam3@mit.edu

Abstract
A new approach to web application development is pre-
sented, in which an application is constructed by configuring
and composing concepts drawn from a catalog developed by
experts.
A concept is a self-contained, reusable increment of func-

tionality. Each concept includes both front-end and back-end
functionality, and exports a collection of components—full-
stack GUI elements, backed by application logic and database
storage.

To build an app, the developer imports concepts from the
catalog, tunes them to fit the application’s particular needs
via configuration variables, and links concept components
together to create pages. Components of different concepts
may be executed independently, or bound together declara-
tively with dataflows and synchronization. The instantiation,
configuration, linking and binding of components is all ex-
pressed in a simple template language that extends HTML.

The approach has been implemented in a platform called
Déjà Vu, which we outline and compare to conventional
web application architectures. We describe a case study in
which a collection of applications previously built as team
projects for a web programming course were replicated in
Déjà Vu. Preliminary results validate our hypothesis, sug-
gesting that a variety of non-trivial applications can be built
from a repository of generic concepts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00
https://doi.org/10.1145/3359591.3359728

CCS Concepts • Software and its engineering → Ab-
straction, modeling and modularity; Organizing princi-
ples for web applications; Very high level languages; Modules /
packages; Designing software.

Keywords application development, web applications, con-
cepts, design, software design, modularity

ACM Reference Format:
Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina
Lao, and Barry A. McNamara III. 2019. Declarative Assembly of
Web Applications from Predefined Concepts. In Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’19), October 23–24, 2019, Athens, Greece. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3359591.3359728

1 Introduction
1.1 Motivation
As a user, you might have noticed the fundamental similari-
ties between the many applications you use on a day-to-day
basis. Maybe it was the day you were scrolling through your
Facebook news feed and then through your Twitter feed; or
giving a 5-star review to a restaurant on Yelp, and then to
a book on Amazon. And just as you, as a user, experience
the same rating concept in different variants in multiple ap-
plications, so the developers of those applications are, for
the most part, implementing that concept afresh as if it had
never been implemented before.

In each of these cases, the developer may be implementing
something slightly different: a rating of a post in one case,
and of a user in another. The premise of this paper, however,
is that these are merely instantiations of the same generic
concept, and that if this genericity could be captured, ap-
plication development could be recast as a combination of
pre-existing concepts in novel ways. This might then allow
applications to be assembled with much less effort, since the
core functionality of the individual concepts would not need
to be repeatedly rebuilt.

79

https://doi.org/10.1145/3359591.3359728
https://doi.org/10.1145/3359591.3359728

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

Our paper shows how this can be done in the context
of a new platform called Déjà Vu. An application is con-
structed by assembling concepts that are implemented as
reusable, full-stack modules. The assembly requires no pro-
cedural code: concept components are glued together by
declarative bindings that ensure appropriate synchroniza-
tion and dataflow. These bindings are expressed in a simple
HTML-like template language, augmenting conventional lay-
out declarations that determine which user interface widgets
from which concepts are used, and how they are placed on
the page. The net result, as we demonstrate through a case
study, is that fairly complex applications can be built with
little effort.

1.2 Building Web Apps: The Status Quo
Suppose you wanted a simple clone of Hacker News1, called
Slacker News (SN), in which registered users can post links,
comment on posts, and upvote posts or comments. How
would you build such an app?

General-Purpose Tools. Youmight use general-purpose pro-
gramming languages, coupled with a web framework, some
web libraries and a database. Even if you are an advancedweb
developer, it would take days to build such an app. You could
perhaps save time by using full-stack components provided
by a web API service. For example, you could use Disqus2 to
implement comments. If the commenting functionality were
isolated from the rest of the app’s functionality, this could be
done with very little effort (usually by just including some
JavaScript and writing a little HTML). But SN intertwines
commenting with upvoting and posting: you want Disqus’s
users to be the same users that can post links, and you want
users to be able to upvote comments as well as posts. Even
if the API were flexible enough for you to be able to pull
off such an integration, it would likely require you to open
up the full-stack black box, and write server-side code. For
example, you might need to create a notification hook so
that your app is notified when a comment is created, so that
it can be given an initial score.

Content Management Systems. Another option would be
to use a content management system (CMS) such as Drupal3
or WordPress4. A CMS supports the creation of websites
whose functionality primarily involves reading and writing
content. Many CMSs provide a large suite of plug-ins that
allow a website to be extended with new features. Like our
concepts, these plug-ins are full-stack, and importing and
configuring them is usually straightforward. But because
plug-ins lack a generic composition mechanism, they can
usually only be combined in certain predefined ways. More

1https://news.ycombinator.com/
2https://disqus.com/
3https://www.drupal.org
4https://wordpress.com/

application-specific combinations typically require modify-
ing server-side CMS code. For example, you might be able
to include a “comment” plug-in in your app, but if it’s not
designed to work with the “upvote” plug-in, you’d have to
write complex glue code.

Low-Code Tools. A third option is to use a low-code devel-
opment platform (e.g., Microsoft Power Apps5), or one of the
many tools and languages for end-user programming of data-
centric apps (e.g., [19, 30]). These tools typically offer a visual
interface and domain-specific languages to specify a schema,
queries, updates, and views. For standard CRUD (create-
read-update-delete) functionality, these platforms can work
well, and they allow arbitrary customization of queries and
updates (which our Déjà Vu platform does not). Code for
handling the mechanics of GUI elements, data storage, server
requests, etc., is provided and hidden, and this is a great help.
But unlike Déjà Vu, which provides implementations of rich
behavior, a low-code approach will still require each new
concept to be implemented anew. Moreover, functionality
that is not expressible in the language—because it involves
some algorithmic complexity, or a more complex user in-
terface widget—must be provided by pre-built plug-ins. For
example, SNmight require posts to be recommended to users
based on the preferences they expressed in their upvoting
of other posts; this might be provided as a machine learning
plug-in. As with CMSs, such plug-ins can only be composed
in ad hoc ways, and may require complex glue code.

1.3 Déjà Vu’s Approach
Concept as Modules. In our approach, concepts are the
building blocks of applications. A concept is a self-contained,
reusable increment of functionality that is motivated by a
purpose defined in terms of the needs of an end user [17].
For example, a comment concept manages the creation and
display of comments, and a scoring concept lets users as-
sign scores to items. Concepts are more fine-grained than
traditional plug-ins or microservices, which would likely, for
example, treat all the concepts associated with user review-
ing (such as scoring, comments and recommendations) as
part of a single plug-in or service.

Full-Stack Modules. A Déjà Vu application is a set of con-
cept instances that run in parallel. Each instance is a full-
stack service in its own right, with front-end GUI compo-
nents, a back-end server and data storage, and all the code
necessary to coordinate them.6 By default, these services
run entirely independently of one another, in complete iso-
lation.7 They share no data and do not exchange messages

5https://powerapps.microsoft.com
6The back-end server and data storage might be replicated for scalability.
7The services can run on separate machines or be co-located with our
platform’s runtime system for performance.

80

https://news.ycombinator.com/
https://disqus.com/
https://www.drupal.org
https://wordpress.com/
https://powerapps.microsoft.com

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

with one other. Abstractly, a concept instance is a state ma-
chine that changes state only in response to actions issued
by the user through the front-end.

Data Integration Through Shared IDs. Often, concept in-
stances hold distinct views of objects that can be thought of
as shared. For example, when a scoring concept is combined
with a commenting concept, one can imagine a single object
having both a scoring view (containing its scoring value)
and a commenting view (containing the textual comment).
But, as explained above, there is no explicit sharing of data.
Instead, common identifiers are used to implicitly bind the
distinct views. This is achieved using a special platform func-
tion that generates an identifier, which is then passed to the
two concept instances, ensuring that the objects they hold
will subsequently be associated.

The binding of identifiers between concepts is the source
of polymorphism in Déjà Vu. A more conventional scheme,
in which concepts had type parameters that had to be in-
stantiated, would be less flexible and would impose a greater
burden on the programmer.

Declarative Client-Side Synchronization. Each GUI com-
ponent of a concept contains a front-end widget and a set of
corresponding server-side actions. To connect the different
concepts—making their actions occur together, and passing
data from one to another—the programmer references the
GUI components of multiple concepts in a client-side file,
along with declarative bindings that indicate which actions
of the components are synchronized, and how their inputs
and outputs are related.

Action synchronization is transactional, ensuring that all
or none of the concept server-side actions occur. Of course,
not all components need to be synchronized. Components
can also be placed on a web page so that they run indepen-
dently of one another.

The same transaction mechanism can be used for security.
Concepts are provided for user authentication and access
control whose actions are designed to fail when access is
denied. By synchronizing their actions with the actions of
other concept instances, you can ensure that certain actions
only occur when they should be permitted.

1.4 Contributions
The idea that software should be built from prefabricated
parts dates back at least to 1968 [20]. Since then, many mech-
anisms to support large-scale software reuse have been de-
veloped. What’s new in this work is what the parts are—
full-stack implementations of concepts—and how they are put
together—by declarative synchronization.
This paper makes the following contributions:

• A new approach to application development, showing
how functionality can be understood as a composition
of concepts drawn from a catalog.

(a) create-score with
targetId input “ben” and
sourceId “alyssa”

(b) show-targetwith id input “ben”
showing the score created in Fig. 1a
and ben’s total score

Figure 1. Screenshots of two components of Scoring

• A new platform that supports independent develop-
ment of concepts, a simple template language for in-
stantiating and composing them, and an infrastructure
for ensuring transactional semantics.

• A case study in which we used the platform to build a
suite of non-trivial sample applications.

2 Building Apps with Déjà Vu
To see what using Déjà Vu is like, let’s consider building
Slacker News (SN) (see §1.2). This section is written from
the perspective of the Déjà Vu user; we talk about how to
author concepts later in §3.4. To build apps with Déjà Vu,
users include and configure concepts (§2.1) and create app
components by linking components (§2.2). Users can also
provide CSS to customize the appearance of the application.

2.1 Including and Configuring Concepts
Choosing Concepts. The process of building a Déjà Vu app
begins by navigating the catalog of concepts to find the con-
cepts that provide the functionality you need for your app.
The documentation accompanying a concept includes infor-
mation about the configuration options and the exported
components. Fig. 1 shows some components of Scoring. Con-
cept components control a patch of the screen, are interactive,
and can read and write back-end data. They also have input
and output properties.

SN usesAuthentication to handle user authentication,Com-
ment to comment on posts and reply to comments, and Scor-
ing twice: for keeping track of upvotes on both posts and on
comments separately. It also uses Property—which provides
a data-model-defining facility for simple CRUD behavior—to
save a post’s author, title, and url.

IncludingConcepts. The concepts used by the app are spec-
ified in the app’s JSON config file (Fig. 2, lines 3-22). The
usedConcepts object has one key-value pair per concept
instance. The key (e.g., “post” on line 6) determines the name
that is going to be used in the HTML to refer to that instance.
The value is another object with two optional key-value pairs:
name for providing the name of the concept to be instanti-
ated (e.g., “Property” on line 7), and config for specifying
the configuring options for the concept instance (e.g., the

81

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

1 {
2 "name": "sn",
3 "usedConcepts": {
4 "authentication": {},
5 "comment": {},
6 "post": {
7 "name": "Property",
8 "config": {
9 "schema": {
10 "title": "Post", "type": "object",
11 "properties": {
12 "author": { "type": "string" },
13 "title": { "type": "string" },
14 "url": { "type": "string", "format": "url" }
15 },
16 "required": ["author", "title", "url"]
17 }
18 }
19 },
20 "scoreposts": { "name": "Scoring" },
21 "scorecomments": { "name": "Scoring" }
22 },
23 "routes": [
24 { "path": "", "component": "home" },
25 { "path": "/login", "component": "login" },
26 { "path": "/post", "component": "show-post-details" },
27 ...
28]
29 }

Figure 2. Excerpt of SN’s configuration file

object in lines 8-18). If no concept name is provided, the con-
cept instantiated is the one with name equal to the instance
name. Thus, for example, the concept to be instantiated for
“authentication” is Authentication (line 4). If no configuration
object is given, the default configuration for that concept is
used. The format of the values of configuration options is
also JSON.

Configuring Concepts. In SN, we only have to configure
Property. Property accepts a configuration variable (schema)
that expects a JSON Schema8 to describe the objects it will
be saving. We use schema to specify the type of properties
we expect our objects to have. In SN, our objects are “posts”
(line 10), and we expect them to have an author, title, and a
url (lines 11-15). The effect of this is that when we include
a component from Property, such as create-object, the
component will allow the user to input only those fields—
author, title, and url. Moreover, since we specified that the
format of the url field is url (line 14) and that the fields
author, title, and url are required (line 16), create-object
will expect the user to provide a value for each one and check
that the value given for the url field is a valid URL. If the

8https://json-schema.org/

user doesn’t provide a value for each field, or if the value for
url is invalid, create-object will show an error message.

Other App Configuration. In the app’s config file, we also
define the name (Fig. 2, line 2) and routes (lines 23-28) of our
app. Each route maps a URL path to a component. A compo-
nent that is accessible via URL is a page. SN’s homepage is the
component home (line 24) because path is empty. If the user
navigates to /login, the login component will be shown
(line 25) and if they navigate to /post, the show-post-details
component will be shown (line 26).

2.2 Linking Components
Each app component is written in a separate HTML file.
Fig. 3 shows excerpts of the code for SN’s submit-post and
show-post components, together with a screenshot of how
they appear to users. Our template language looks, by design,
similar to other template languages. To create an app com-
ponent, users include components (§2.2.1) and synchronize
them to implement the desired functionality (§2.2.2).

2.2.1 Including Components
Including Components. An app component can contain
other components, which can be concept components or app
components. A concept component is a component that is
defined and exported by a concept. An app component, on
the other hand, is defined by the app developer and it is part
of the app being developed. Components are included as if
they were HTML elements, with the tag given by the concept
instance or app name, followed by the component name.
Thus, submit-post (Fig. 3a) includes one app component,
navbar (line 2); two concept components, create-object of
the “post” instance of Property (lines 5-8), and create-score
of the “scoreposts” instance of Scoring (lines 9-11); and one
built-in component, dv.gen-id (line 4), which generates a
unique ID.

I/O Binding. Inputs to a component are bound with the
syntax property=expr. Template expressions can include
literal values, app component inputs, outputs from included
components, and standard operators. Components can be
fired repeatedly, and the output properties hold the values
from the last execution. This is how a selector widget such
as a dropdown would typically be connected to another
component: the dropdown sets an output property every
time it is activated containing the choice the user made,
which is then bound to the input property of components
that use that choice.
Some input properties are for customizing appearance

and have no impact on the behavior of the component. For
example, as a result of setting buttonLabel to "Submit" on
line 7, Fig. 3a, create-object’s button will carry the label
“Submit” instead of the default button label “Create Post”. The
hidden property of show-object (Fig. 3b, line 2) indicates
that the component should be activated but not visible. Thus

82

https://json-schema.org/

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

1 <dv.component name="submit-post">
2 <sn.navbar /> ...
3 <dv.tx>
4 <dv.gen-id /> ...
5 <post.create-object id=dv.gen-id.id
6 initialValue={ author: sn.navbar.user.username }
7 showExclude=["author"] buttonLabel="Submit"
8 newObjectSavedText="Post submitted" />
9 <scoreposts.create-score targetId=dv.gen-id.id
10 sourceId=sn.navbar.user.username
11 value=0 hidden=true /> ...
12 </dv.tx> ...
13 </dv.component>

(a) Excerpt of SN’s submit-post component

1 <dv.component name="show-post"> ...
2 <post.show-object id=$id hidden=true /> ...
3 <dv.if condition=post.show-object.loadedObject>
4 <sn.upvote id=$id user=$user />
5
6 {{post.show-object.loadedObject.title}}
7 ...
8 (<post.show-url showBaseUrlOnly=true
9 url=post.show-object.loadeObject.url />)
10 posted by {{post.show-object.loadedObject.author}}
11 <dv.show-date format='time-ago'
12 date=post.show-object.loadedObject.timestamp /> ...
13 <scoreposts.show-target
14 id=$id showId=false
15 showScores=false totalLabel="" /> points
16 <dv.link href="/post" params={ id: $id }>
17 comments
18 </dv.link>
19 </dv.if>
20 </dv.component>

(b) Excerpt of SN’s show-post component

Figure 3. Linking components

the object data itself is still loaded, emitted as an output,
and used in several parts of the view—the title and the url
are used and shown through lines 5-9, while the author is
displayed on line 10.
App components can have their own input properties.

Any name used in an expression that is prefixed with $
is considered to be an input property of the app compo-
nent. For example, show-post has an input named id that
it uses in lines 2, 4, 14, and 16 (Fig. 3b). Based on this input,
show-objectwill show the post whose IDmatches the given
one; upvote will use the ID as the target of the score if one
is created; show-target will show the score with the given
ID; and clicking on the “comments” link will take the user to
show-post-details with its input id set to the given ID.

To display how long ago the post was created, in show-post
we bind the date input property of show-date to the ob-
ject timestamp (line 12) and set its format input property
to “time-ago” (line 11). All objects from Property have a
timestamp field that stores the object’s creation date.

ID Sharing. To bind entities in different concepts we use
a common identifier. In submit-post (Fig. 3a), for exam-
ple, the same ID, generated by gen-id (line 4), is passed
to create-object (line 5) and create-score (line 9). As a
result, create-score will create a score with the same tar-
get ID as the object created by create-object. Similarly, in
show-post (Fig. 3b), we feed the id input to show-object
(line 2) and show-target (line 14). Each of these components
loads and displays its own view of the post entity; the effect
when put together is to display a SN post object.

2.2.2 Synchronizing Components
Action Types. Concept components have two actions: an
evaluation action (eval) and an execution action (exec). The
concept author determines what triggers the evaluation or
execution of the component. Typically, the loading of the
component itself triggers the evaluation of a component,
and some user interaction (e.g., a button click) triggers its
execution. What happens on eval or exec is also up to the
author of the concept—the only restriction is that an eval ac-
tion cannot produce a side effect. Note that app components
don’t have actions. This is because app components have no
back-end functionality of their own—all data and behavior
is pushed to concepts.
Eval/exec actions support the conventional user interac-

tion pattern of web apps: data is loaded and displayed, and
then the user executes commands to mutate the data. It
would be possible for concept components to offer arbitrary
action types to support more complex forms of behavior. But
this would require more work from the user, who would now
have to specify what action types are to be coordinated.

Synchronizing Actions. There are two kinds of app compo-
nents: a regular component and a transaction (tx) component.
A regular component allows any of its children components

83

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

1 <dv.component name="upvote"> ...
2 <dv.tx>
3 <authentication.authenticate
4 username=$user.username hidden=true />
5 <scoringposts.create-score
6 value=1 sourceId=$user.username targetId=$id ... />
7 </dv.tx> ...
8 </dv.component>

Figure 4. Excerpt of SN’s upvote component that shows
how we prevent unauthenticated users from upvoting posts

to eval/exec without synchronization. A tx component, on
the other hand, synchronizes the actions of the concept com-
ponents it wraps, so that an exec in one happens with the
exec of the other(s)—and similarly for eval actions. Synchro-
nized actions either complete in their entirety if all succeed,
or have no effect whatsoever other than optionally display-
ing an error if one or more aborts. Instead of putting each
component in separate HTML files, you can wrap elements
in another component with the dv.tx tag to create an anony-
mous tx component with content equal to the content of the
tag.

In SN’s submit-post, the tx is triggered by create-object
(Fig. 3a, line 5) when the user clicks on the button. This is
because the button in the create-object component of
Property causes the component to execute on click, and since
create-object is wrapped in a dv.tx, it will trigger the
execution of all its sibling concept components. As a result,
a new post and a new score will be created, bound by the
shared ID.

2.3 Specifying Security Policies
In Déjà Vu, a security policy is specified implicitly through:
(1) which concepts are included and how they are configured;
(2) which components from the included concepts are used;
and (3) how concept components are bound to other concept
components in tx components.

For example, to implement the policy “posts must have a
title” we say that the title field is required in the configuration
of Property (Fig. 2, line 16). The server of Propertywill enforce
this constraint, and return an error if no title is given when
a new object is created. Other constraints, such as “posts
cannot be deleted”, are enforced by the omission of certain
components: in this case, the delete-object component
that lets you delete Property objects is not included in the app.
Finally, Fig. 4 shows howwe use tx components to implement
the policy “only authenticated users can upvote posts”. In
SN’s upvote component, we wrap the creation of a new score
in a tx component with the authenticate component of
Authentication. The authenticate component checks that
the logged in user matches the given username. If it doesn’t,
it returns an error. The error causes the transaction to abort

and, as a result, it causes the upvote of a post to abort. Since
there’s no other component in the app that would let a user
upvote a post, only authenticated users can upvote a post.

Note that policies are expressed in HTML and JSON, but,
as we’ll see later, are actually enforced server-side by our
runtime system and concept servers.

3 Prototype Implementation
Déjà Vu is built using TypeScript9, Angular10 and Node.js11.
The implementation consists of:

• a front-end library to synchronize components (§3.1);
• a server gateway to coordinate transactions and run
security checks (§3.2);

• a compiler that transpiles a Déjà Vu app into an An-
gular app (§3.3); and

• a catalog of concepts (§3.4).
We also have a few Angular components that implement

built-in Déjà Vu components such as dv.gen-id for gen-
erating IDs, dv.link for creating links, and dv.button for
creating buttons that trigger the execution of a transaction.
The front-end library communicates with the gateway,

which then communicates with the concept servers. The
communication between a concept server and its data store
requires no mediation.

3.1 Front-End Library
Event Dispatching. The front-end library allows concept
components to register with the runtime system to get noti-
fied when they should eval/exec, and to request the system
to trigger eval/execs of other components. The library is an
event mediator [29]: a concept component doesn’t subscribe
to eval/exec events announced by other components directly,
but it does so indirectly through the library. The library
determines how to dispatch an eval/exec event depending
on whether the app component is a tx component or not.
Thus, it is as if each app component has a local mediator to
coordinate its own synchronization.

Client-Server Communication. The client-side of a con-
cept doesn’t communicate with its server directly. All com-
munication happens through the front-end library, which
then communicates over HTTP to the gateway. When a com-
ponent runs (evals/execs), the component tells the runtime
system which inputs were provided and can give extra in-
formation for its concept server.

If the concept component being run is not part of a tx, the
front-end library issues an HTTP request to the gateway as
soon as the run request is received. If it is part of a tx, the
front-end library triggers the eval/exec of the other concept
components in the app component, batches all run requests

9https://www.typescriptlang.org/
10https://angular.io
11https://nodejs.org

84

https://www.typescriptlang.org/
https://angular.io
https://nodejs.org

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

from all components that are part of the tx, and sends only
one aggregate request to the gateway.

After the gateway processes the request, concept servers
receive an HTTP request with the name of the component
to run, whether it’s an eval or exec, its inputs, and the extra
information provided by the component.

3.2 Gateway Server
The communication between the gateway and concept servers
happens through designated HTTP routes that all concepts
are required to implement.
The gateway receives from the front-end library the in-

formation on what component executed (given as a path
from the root), with what inputs, and the extra information
provided by the component. At this point, the gateway runs
security checks to ensure that the request is valid (more
about this in §3.2.1). If the request is invalid, it returns an
error.

If the request is valid and it is a non-tx request, the gateway
forwards the request to the corresponding concept server
and forwards the response obtained from the concept server
back to the front-end library.

If the request is a tx request, the gateway acts as a transac-
tion coordinator and runs a two-phase commit (2PC) protocol
with all the concept servers that are part of the transaction.
If all concept servers vote ok, the gateway commits the tx
and forwards all the responses from the concept servers in
one HTTP response to the front-end library. The front-end
library demultiplexes the gateway response and forwards the
individual responses to the concept components. If at least
one concept server votes abort, the gateway sends abort
messages to all concept servers and forwards the responses
from the concepts that voted abort back to the front-end
library. The error responses are used client-side by concept
components to show an error to the user. Note that the re-
sponses from the concept servers that voted ok are not sent
back if the transaction aborts. This is to prevent a malicious
client from receiving information it is not allowed to see.

3.2.1 Security
Our runtime system has no built-in notion of authentication
or authorization. This functionality is implemented in con-
cepts, which makes it easier for experts to author a variety
of concepts that implement different authentication and au-
thorization mechanisms, without requiring changes to the
runtime system.
The server-side concept implementations are part of the

trusted base, and are assumed not to have been compromised.
But the client-side code, of course, cannot be trusted. We
therefore need to ensure that a client cannot violate the
structure of transactions, or run the server-side action of a
component that is not included in the app.
There are three properties of our implementation that

allow us to enforce a policy: (1) when run, components report

the input values that they were run with; (2) the gateway
knows what components are expected to run and what their
input values could be (how it knows is explained below); and
(3) concepts don’t communicate with their servers directly,
but rather all communication is via the gateway.
On startup, our system provides the app source code to

the gateway. From the source code, the gateway builds a
component tree that records the hierarchical relationships
between all the components in the app and the input property
bindings. When the gateway receives a request to eval/exec
a certain component, it verifies that the component path
argument given by the front-end library is a path of the
component tree. If it isn’t, it returns an error.
If the component path is a valid path, it checks that the

input values given to the action are valid. If, in the app’s
source code, the user binds a component input to a literal,
and the value doesn’t match the input value given to the the
action, it returns an error. For example, in SN’s upvote com-
ponent (Fig. 4) the user sets the score value to 1 (value=1,
line 6). As a result, when the gateway gets a request to exe-
cute the create-score action in upvote, it checks if value
is 1. Thus, a malicious user can’t, e.g., add 10 points to a post
in one upvote (because 10,1).
If the request is a transaction request, the gateway ad-

ditionally checks that the input values of all components
that are part of the transaction are consistent: for every
component of the transaction, the gateway evaluates the
expression each input is bound to in the source code using
the output values recorded at the time the tx was initiated,
and checks that the result matches the given input values.
For example, when the gateway gets a request to execute
SN’s submit-post transaction (Fig. 3a), it checks that the id
input value of create-object matches the targetId value
for create-score. These inputs have to match because: (1)
the id input of create-object is bound to dv.gen-id.id
(line 5); (2) the targetId input of create-score is bound to
dv.gen-id.id (line 9); and (3) they are wrapped in a dv.tx
(lines 3-12).

3.3 Compiler
Our compiler outputs an Angular application from the app’s
config and component files. For each app component, it cre-
ates an Angular component. Our component language is a
very thin layer atop Angular’s template syntax.

When an app developer runs a Déjà Vu app, we run the
compiler, save its output in a hidden directory, and start the
gateway and the concept servers. The gateway, in addition
to processing eval/exec requests, serves the Angular app
generated by the compiler.

3.4 Concept Catalog
Table 1 shows the current state of our catalog. To give a sense
of the amount of functionality implemented in each concept,
we include the number of components (# C) and the number

85

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

Table 1. Concept catalog

Concept Purpose # C LoC

Authentication Verify a user’s identity with a username and
password

10 1,979

Authorization Control access to resources 12 1,929
Chat Exchange messages in real time 5 1,185
Comment Share reactions to items 6 1,308
Event Schedule events 8 1,593
Follow Receive updates from sources 13 2,180
Geolocation Locate points of interest 8 1,719
Group Organize members into groups so that they

can be handled in aggregate
13 2,167

Label Label items so that they can be found later 9 1,437
Match Connect users after they both agree 8 1,592
Passkey Verify a user’s identity with a code 6 1,180
Property Describe an object with properties that

have values
12 3,924

Ranking Rank items 5 1,037
Rating Crowdsource evaluation of items 9 1,537
Schedule Find a time to meet 8 2,666
Scoring Keep track of scores 7 1,621
Task Keep track of pieces of work to be done 13 2,106
Transfer Transfer money or items between accounts 12 2,165

of lines of HTML, CSS, client- and server-side TypeScript
code in the concept’s implementation (LoC)12.
This catalog is of course just a preliminary version. We

hope expert users will grow the catalog and contribute new
concepts (“new words to the vocabulary” in the terminology
of [28]). To support concept development, we have built a
CLI for scaffolding concepts and various libraries to ease
common tasks, such as handling tx requests according to the
2PC protocol.

Authoring Concepts. Concept authors implement a server
file to process gateway requests and an Angular component
for each concept component. Each Angular component im-
ports our front-end library and invokes a method to register
itself with the runtime system as soon as it loads. The same
front-end library can be used by the component to trigger the
eval/exec. Components define callback methods that are in-
voked by our systemwhen there’s an exec/eval event. Within
a exec/eval method the component can block for inputs.
While our current implementation is tied to Angular, it

might be possible to create a framework-agnostic version of
Déjà Vu that would allow concept authors to use whatever
front-end framework they are most familiar with.

4 Evaluation
4.1 Comparison with Standard Approaches
Let’s consider a small example component that lets users
create posts with a rating. Fig. 5 shows submit-postwritten
in Angular and React. For the example, we assume that we
12The count includes comments and blank lines. Unit tests are not counted.

1 <form (ngSubmit)="submitPost()">
2 <app-post-input [ngModel]="p"></app-post-input>
3 <app-rating-input [ngModel]="r"></app-rating-input>
4 <button type="submit">Submit</button>
5 </form>

1 @Component({ selector: 'app-submit-post', ... })
2 export class SubmitPostComponent {
3 p: Post; r: number;
4 constructor(private postService: PostService) {}
5 submitPost() {
6 this.postService.savePost(this.p, this.r);
7 }
8 }

(a) submit-post component in Angular

1 class SubmitPost extends React.Component {
2 constructor(props) {
3 super(props);
4 this.state = { p: new Post(), r: 0 };
5 this.handleChange = this.handleChange.bind(this);
6 this.handleSubmit = this.handleSubmit.bind(this);
7 }
8 handleChange(e) {
9 this.setState({ [e.target.name]: e.target.value });
10 }
11 handleSubmit(e) {
12 PostService.savePost(this.state.p, this.state.r);
13 e.preventDefault();
14 }
15 render() {
16 return (
17 <form onSubmit={this.handleSubmit}>
18 <PostInput onChange={this.handleChange} />
19 <RatingInput onChange={this.handleChange} />
20 <button type="submit">Submit</button>
21 </form>
22);
23 }
24 }

(b) submit-post component in React

Figure 5. Two client-side code variants for submit-post
(Angular and React)

have a post-input component that lets the user input the
content of the post, and a rating-input component that
lets the user select a star rating for the post (Fig. 5a, template
file, lines 2-3 and Fig. 5b, lines 18-19). We also assume that
we have a client-side post service library for making requests
(Fig. 5a, component file, line 6 and Fig. 5b, line 12).

Fig. 6 shows the server-side code of submit post. We con-
sider two variants: as a monolith and using microservices.
We assume that the server will process client requests and
invoke the savePost server-side function with the correct

86

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

1 function savePost(p: Post, r: number) {
2 if (Post.isValid(p) && Rating.isValid(r)) {
3 db.save(p);
4 }
5 }

(a) Server Monolith

1 function savePost(p: Post, r: number) {
2 if (PostService.isValid(p) &&
3 RatingService.isValid(r)) {
4 const newP = PostService.newPost(p);
5 RatingService.newRating(newP.id, r);
6 }
7 }

(b) Server using Microservices

Figure 6. Two server-side code variants for submit-post
(monolith and microservices)

1 <dv.component name="submit-post">
2 <dv.tx>
3 <dv.gen-id />
4 <property.create-object id=dv.gen-id.id />
5 <rating.rate-target targetId=dv.gen-id.id />
6 <dv.button>Submit</dv.button>
7 </dv.tx>
8 </dv.component>

Figure 7. submit-post component in Déjà Vu

inputs (Fig. 6a or Fig. 6b, line 1). In the monolithic back-
end (Fig. 6a), we assume there are libraries for validating
posts, ratings, and accessing the database. In the microser-
vices back-end (Fig. 6b), we assume there are post and rating
services.
Note that, even if we assume that all the post and rating

functionality is readily available, there’s still a lot of code
that we need to write to put everything together. With a
standard approach, we have to:

• Subscribe to events and write event handlers. In An-
gular, we subscribe to the ngSubmit event generated
by the form so as to invoke the onSubmit method
of the component whenever the form gets submitted
(Fig. 5a, template file, line 1). In React, we subscribe to
the onChange event generated by the post and rating
components (Fig. 5b, lines 18-19) and to the onSubmit
event of the form (Fig. 5b, line 17).

• Aggregate data for request. In Angular, the event han-
dler for submit events, submitPost(), has to aggre-
gate data of post-input and rating-input to build
the server request. In React, the event handler for

onChange events updates the component state, which
is then read by the event handler for submit events to
build the server request. In both cases, the request is
sent by the post service when we invoke its savePost
method.

• Handle client-server communication.While we are as-
suming that there exists a client-side post service to
issue requests, certain modifications would normally
require the modification of the server API and of the
client service. For example, adding a location to the
postmight require adding a new parameter to savePost
and a new parameter to the server API so that it ex-
pects a location value.

• Combine server-side functionality. Even if the server-
side functionality of posting and rating exists, we still
have to, in the case of the monolith, make the appropri-
ate function calls to validate the request and save the
post to the database. Also, in the server using microser-
vices, we still have to make the appropriate calls to
the post and rating services. Moreover, integrating mi-
croservices could, in some cases, require more complex
code, since one might have to implement transactions.

On the other hand, when using Déjà Vu, none of this is
necessary. Fig. 7 shows the implementation of submit-post
using Déjà Vu, where we assume that we have the Property
and Rating concepts. In Déjà Vu, wrapping a component in
a dv.tx automatically subscribes to eval/exec events, runs
the component handlers, aggregates the data client-side and
sends the request, unpacks the request server-side, and co-
ordinates the calls to the back-end services of each concept
so they happen in a transaction if necessary. All of this func-
tionality is hidden from the app developer, who doesn’t need
to write JavaScript code to handle events or combine server-
side microservices (for example). Of course one could build
a set of libraries that would alleviate the amount of inte-
gration code required when using a standard approach, but
that would amount to almost replicating Déjà Vu’s runtime
system.

4.2 Case Study
We (the authors of this paper) built a small suite of applica-
tions that replicate the functionality of student projects in
an undergraduate course. The student projects are from the
Fall ‘16 offering of the class.

With the students’ permission, we obtained access to their
code repositories so we could run their applications and ex-
plore their behaviors. For each project, we developed any
missing concepts in order to replicate the behavior of the
original student app. We replicated only the core function-
ality, omitting behavioral details that are not essential to
the app’s working. We didn’t use any of the code written
by students other than some HTML to provide page content
such as titles and CSS to style the appearance.

87

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

Table 2. Student projects we replicated in Déjà Vu. The symbols
next to the code count indicate the front-end library used: †React v15,
∗Handlebars v4, ∗∗Jade v1

App Purpose LoC

Accord Support musical bands in the selection of setlists 8,671 †

ChoreStar Make it easy for parents to assign chores to children 3,183 ∗

EasyPick Recommend classes to college students 3,161 ∗

GroceryShip Facilitate peer grocery delivery between students 4,996 ∗

Lingua Develop language skills by chatting with native speakers 4,639 †

Listify Crowdsource opinion-based rankings of anything 5,876 †

LiveScorecard Provide a live leaderboard for climbing competitions 8,742 †

MapCampus Allow students to plan events on campus 3,807 †

Phoenix Help people discuss mental health and make friends 7,062 ∗

Potluck Help people plan parties where guests bring supplies 4,344 †

Rendezvous Plan public events on campus 4,498 ∗∗

SweetSpots Mark spots on a map and review spots added by others 3,898 †

The 12 apps we replicated were selected independently by
the teaching assistants of the class as the best projects out
of about 30 projects. The project selection happened before
we contacted students about using their projects to evaluate
Déjà Vu, and the teaching assistants of the course have no
relation to our research project.

The names of the student projects we replicated, together
with their purposes, are shown in Table 2. We also include
the number of lines of HTML, CSS, client- and server-side
JavaScript code for the student implementations.13 The stu-
dent projects were mostly 4-person projects, done for 5
weeks, with each student taking 10-20 hours per week. Thus,
each project represents 200-400 person-hours of work.

Through the case study, we sought to answer two research
questions:

• Is it possible to build a variety of non-trivial applica-
tions using Déjà Vu? (§4.2.1)

• Can this be done without building non-generic con-
cepts that are specific only to a given app? (§4.2.2)

4.2.1 Experience
Selecting Concepts. Selecting a concept to provide required
functionality is relatively easy, since concepts have mostly
non-overlapping functionality. A possible source of overlap
we have experienced is due to the flexibility of Property. For
example, in Chorestar, parents have to be associated with the
children accounts they create. This is so that, for example,
parents can assign chores only to their children and not to
other children in the system. There are two ways to do this.
One way is to use Group, and compose it in such a way that
when a parent account is created, a group with the same ID
is created as well. Then, when a new child account is created,
the child is added as a member of the group with the same
ID as the ID of the logged in parent. The other option is to
13The count includes comments and blank lines. Unit tests are not counted.

1 { ...
2 "usedConcepts": { ...,
3 "parentauthentication": { "concept": "Authentication" },
4 "childauthentication": { "concept": "Authentication" }
5 }, ...
6 }

(a) Excerpt of the configuration file for ChoreStar

1 <dv.component name="parent-home"> ...
2 <chorestar.parent-navbar /> ...
3 <dv.tx>
4 <h2>Add a New Child</h2>
5 <dv.gen-id />
6 <dv.status savedText="Child created" />
7 <parentauthentication.authenticate
8 user=chorestar.parent-navbar.user hidden=true />
9 <childauthentication.register-user
10 id=dv.gen-id.id signIn=false
11 showOptionToSubmit=false /> ...
12 <dv.button>Create Child</dv.button>
13 </dv.tx>
14 </dv.component>

(b) Excerpt of parent-home

Figure 8. Excerpts of ChoreStar

use Property, and configure it so that child profiles have a
field parentId. Then, when a new child account is created,
you create a child object with the parentId field set to the
ID of the logged in parent. In a case like this, one could use
either Property or Group to implement the desired behavior.

With the exception of cases like this, selecting concepts is
straightforward. In the future, however, as the catalog grows,
selecting a concept might be harder. Especially if the catalog
becomes more like a marketplace, in which there might be
multiple variants of each concept. In this case, selecting a
concept would be more akin to choosing a theme in a CMS
such as WordPress.

Implementing Complex Behaviors. Non-trivial behavior
that might, at first, seem like it would require a very specific
concept, can often be implemented by combining existing
concepts. For example, in ChoreStar, there are two kinds of
users, parents and children, and only parents can create chil-
dren accounts. This relatively uncommon feature was easy
to implement in Déjà Vu (Fig. 8): we included Authentication
twice (Fig. 8a), and synchronized the register-user com-
ponent for children with the authenticate component of
parents (Fig. 8b).

Incremental Development. With Déjà Vu, it is possible to
develop an app incrementally. We found that this made it
easier to evolve and debug applications as we built them. For
example, in Rendezvous, campus events have a location and

88

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

a guest-list that only hosts can edit, but everyone else can
view. In Déjà Vu, you can start with the event and location
functionality by including Event and Geolocation, check that
it works as you expect, then add guests with Group, and so
on, one concept at a time.

Protecting Actions. We noticed that it is easy to forget
to protect actions with authenticate, especially because
authenticate produces no visible change in the behavior of
the app. In most apps, users have to sign in, after which they
are redirected to some other page where they can perform
operations only authenticated users are supposed to perform.
For example, in Chorestar, after a parent signs in, the parent
is redirected to the parent home, where it can create chores.
During manual testing, it is easy to assume that the actions
are protected, since you can only reach that page using nor-
mal traversal of the site if you are already signed in. But
if the authenticate component is not wrapped in a dv.tx
with the component it is supposed to protect, a malicious
user can craft an HTTP request to perform the action with-
out authenticating. A potential solution to this problem is to
analyze the app’s source code and, in the style of [21], warn
the user if we find e.g., a create-score action protected,
but a delete-score not.

App Freeze. It is possible to write Déjà Vu code that causes
the app to freeze. This is more likely to happen in Déjà Vu
than in app development in general, because actions can
block when they are triggered externally and don’t have the
inputs they need to run. This could happen if, for example,
the user forgets an I/O binding, or if the output of a compo-
nent that is produced after a tx is bound to a required input of
another component in the same tx. This is less of a problem
than it might at first appear to be: unlike the authentication
problem discussed above, it is easy to realize that something
is wrong with the app because it freezes on every test run. To
help the app developer, one could perhaps incorporate some-
thing like session types [16] to detect statically if a required
input was not given or if there is a deadlock.

4.2.2 Modularity Analysis
In this section, we analyze how the apps we built to repli-
cate student projects use the catalog. The apps in the suite,
together with the number of times they use a concept from
the catalog, are shown in Table 3.

Discussion. The median number of concept types used per
app isQ2=6 (Q1=5.75,Q3=8). The median number of concept
instances used per app is Q2=9 (Q1=7.75, Q3=10). Most apps
use roughly the same number of concept instances (σ=2.3).
This is probably because all the student projects we replicated
took a similar amount of person-hours of work to develop,
and are therefore roughly equivalent in terms of complexity.
The median number of times a concept is used across

projects is Q2=3 (Q1=1, Q3=5). The median number of times

Table 3. Concept usage in sample apps

Concept/App A
cc
or
d

Ch
or
es
ta
r

Ea
sy
Pi
ck

G
ro
ce
ry
Sh

ip

Li
ng

ua

Li
st
ify

Li
ve
Sc
or
ec
ar
d

M
ap
Ca

m
pu

s

Ph
oe
ni
x

Po
tlu

ck

Re
nd

ez
vo
us

Sw
ee
tS
po

ts

#A
pp

s
#I
ns
ta
nc
es

Authentication 1 2 1 1 1 1 1 1 1 1 1 1 12 13
Authorization 1 1 1 1 1 1 1 2 1 1 1 1 12 13
Chat 0 0 0 0 1 0 0 0 0 0 0 0 1 1
Comment 1 0 1 0 0 0 0 0 1 0 1 1 5 5
Event 0 0 0 0 0 0 1 1 0 1 1 0 4 4
Follow 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Geolocation 0 0 0 0 0 0 0 1 1 0 1 1 4 4
Group 1 0 0 0 2 1 3 1 0 1 1 0 7 10
Label 0 0 0 0 0 0 0 0 1 0 1 1 3 3
Match 0 0 0 0 0 0 0 0 1 0 0 0 1 1
Passkey 0 0 0 0 0 0 2 0 0 0 0 0 1 2
Property 5 3 3 3 2 2 4 3 2 2 2 1 12 32
Ranking 0 0 0 0 0 1 0 0 0 0 0 0 1 1
Rating 1 0 4 1 1 0 0 0 0 0 0 1 5 8
Schedule 0 0 0 0 0 0 0 0 1 0 0 0 1 1
Scoring 0 0 0 0 0 1 2 0 0 0 0 2 3 5
Task 0 1 0 0 0 0 1 0 0 0 0 0 2 2
Transfer 0 1 0 0 0 0 0 0 0 1 0 0 2 2

Concept Types 6 5 5 4 6 6 8 6 8 6 8 9
Concept Instances 10 8 10 6 8 7 15 9 9 7 9 10

a concept is instantiated is Q2=3.5 (Q1=1.25, Q3=7.25). All
of the apps require identification of users and preventing
them from accessing content they don’t own. Also, it is very
common for apps to need to store domain-specific fields.
For example, a “description” for parties in Potluck. Thus,
Authentication,Authorization, and Property are the most used
concepts. The Property concept is the concept with the largest
number of instances. This is because apps need an instance
of Property for each kind of entity, and a given app could have
multiple entities. For example, in Accord, there are bands,
song suggestions, setlists, media links, and user profiles.

Chat, Follow, Match, Ranking, and Schedule are only used
once. We do not think it is because these concepts are too
application-specific. For Chat, we think it might be because it
is challenging to implement, so only one of the winning stu-
dent teams risked doing so. With enough time, other projects
might have ended up incorporating such functionality. For
example, Rendezvous might have created a group chat for
each campus event so that guests could talk.
Follow implements functionality that is very common in

social media applications: subscribing to a source of updates.
For example, Twitter lets you follow other accounts, and
tweets from accounts you follow appear in your feed. Rank-
ing lets users rank items and show the aggregate consensus
ranking of items. While this looks like a rather specific con-
cept, note that many apps for managing human resources
usually include functionality like this, so that managers and

89

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

stakeholders can stack rank employees to determine promo-
tions.
Match and Schedule are only used in Phoenix. Phoenix’s

functionality revolves around matching users after they both
expressed interest in each other and giving a way for users
that match to find a time to meet in person. While no other
sample app uses Match or Schedule, many apps, such as dat-
ing sites, have matching functionality. And many productiv-
ity apps provide functionality for scheduling meetings.

Deviations. We noticed that it becomes evident when some
project deviates from what you’d expect the normal behavior
of certain functionality to be. For example, in Phoenix, when
two users match because they have expressed an interest in
meeting each other, the app lets the user write a message
to their match. You would expect the app to let users send
messages back and forth with their match from within the
app, but it doesn’t. The message is written within the app,
but it is sent via email, and no record of the message is left
in the storage of the app itself. This behavior is not well
supported by a concept. One could, of course, replicate this
functionality by simply implementing a concept for sending
emails, but a concept that implements a messaging system
would make more sense. In Phoenix, one could then combine
this messaging concept concept with a notification concept
so as to notify users via email when there’s a new message
in their inbox.

Perhaps the students wanted to build a messaging system
within the app but didn’t have enough time, so they ended
up with functionality that is almost a message inbox with
email notifications, but not quite. Or perhaps this is what
they intended to do in the first place. Either way, it raises an
interesting research question—whichwe have yet to explore—
about whether deviations from the norm (where “norm” is
functionality that can be built by combining concepts Déjà
Vu-style) represent design flaws in the application or the
invention of a novel concept.

Criteria forCreatingConcepts. To avoid overlapping func-
tionality between concepts, we only add a new concept to
the catalog if there is no other concept with a similar pur-
pose, and we only add functionality to a concept if such
functionality cannot be obtained by combining the concept
with other concepts. But having simpler and more orthog-
onal concepts can mean more work combining them. For
example, Authentication does not include assigning first and
last names to users, since this functionality can be obtained
by adding Property. It would be easier for app developers,
however, to have such common features included in Authen-
tication as a configuration option despite the redundancy.
The right balance will have to be found empirically.

A different question is whether it is desirable for the cat-
alog to contain multiple variants of a single concept, for
example a variant of Authentication in which an email ad-
dress it the primary identifier versus one in which a social

security number is used. Put another way, is the catalog
more like a marketplace (as found with WordPress themes,
for example) or is it more like a polished standard library (as
with java.util)? This remains to be seen.

5 Related Work
5.1 Programming Paradigms
Object-Oriented Programming (OOP). Concepts and their
instances are roughly analogous to classes and objects. But
the components of a concept, unlike the methods of an object,
have full-stack implementations that include visual repre-
sentations and interaction widgets.
The composition of different concepts could be seen as

including the behavior associated with one concept in the
other (and vice versa), and thus has some similarities to
mixins [5, 10] and traits [8, 26]. But in Déjà Vu, the extra be-
havior is not necessarily orthogonal to the existing behavior.
Synchronizing components intertwines these behaviors: run-
ning a concept action might also trigger some of the included
behavior.

Subject-Oriented Programming (SOP). In SOP [15], a sub-
ject is a collection of states and behaviors reflecting a par-
ticular view. Each subject can separately define and operate
upon shared objects, without any subject needing to know
the details associated with those objects by other subjects.

A subject is like a concept, but SOP is concerned with the
decomposition of the same object into different perceptions
(subjects). In Déjà Vu, concepts are, a priori, not talking about
the same objects at all. It is only after they are composed
together that one can see concepts as providing different
views over the same entities connected by bindings.

Moreover, in SOP, subjects are composed via a composi-
tion rule, which can specify arbitrary requirements for the
composition, and require the implementation of a subject
compositor (code that combines subjects in an environment
according to the rules). Adding new subjects to a composi-
tion requires adding new rules and modifying the subject
compositor. In Déjà Vu, the user determines the composition
rule and the subject compositor by deciding whether the
containing component is a tx or regular component, and by
the property bindings.

Aspect-Oriented Programming (AOP). In AOP [18], the
goal is to increase modularity by allowing the separation of
cross-cutting concerns such as logging. The AOP approach
is to separate a program into “core concerns” that imple-
ment the basic functionality of the software, and “cross-
cutting concerns” (aspects) that encapsulate functionality
that is shared by multiple core concerns. Aspects alter the
behavior of core concerns by applying additional behavior
(advice) at various points in the program (join points).

Viewed through an AOP lens, the concepts of a Déjà Vu
app are usually all core concerns. If there are join points,

90

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

they would be implicit in the synchronization of the tx com-
ponents.

Feature-Oriented Programming (FOP). In FOP, a pro-
gram is a base program plus a stack of features [3]. While
a concept might be viewed as a kind of feature, not every
feature is a concept. A feature may represent an entire col-
lection of concepts. For example, the “news feed” feature
on Facebook includes concepts such as “feed”, “comment”,
and “likes”. Or a feature may represent a small increment of
functionality that would be part of a concept. For example,
a “password validation feature”, which would be part of the
“authentication” concept.

Also, features do not generally exist independently of the
base, and are included in a predefined way. For example, in
AHEAD [4], features are nested tuples of program deltas.
When applied to a program, the source code is transformed
by applying the delta.

Event-Driven Programming. In event-driven programming
[13], software components can publish or subscribe to events,
and the flow of the program is determined by these events.
New software components can add behavior to a system by
subscribing to a particular event, without requiring the mod-
ification of the software component that publishes it. Our
implementation of Déjà Vu is event driven: concept compo-
nents announce eval/exec events and are notified when it is
time for them to eval/exec. But this is hidden from the app
developer; app components can’t announce events or have
concept components listen to arbitrary events.

Postmodern Programming. Our approach could be seen
as an instance of postmodern programming [23, 24] in that
the programming effort involves primarily gluing existing
parts together rather than creating new ones. Contrary to
other postmodern approaches, however, it should be noted
that our composition mechanism and language are homoge-
neous. The heterogeneity of component implementations is
encapsulated and not visible to the end-user programmer.

Behavioral Programming (BP) In BP [14], an app con-
sists of independent modules that run in parallel and com-
municate via events. Modules in BP (behaviors) are more
granular than concepts, because there’s usually one per soft-
ware requirement, while a single concept would support
multiple requirements. In BP and Déjà Vu, modules can trig-
ger, subscribe to, and block events. In Déjà Vu, however,
blocking an event is not something the user can specify as a
means of controlling the flow of the program, but happens
automatically when a component action fails.

5.2 Architectural Patterns
Microservices. Microservices is a popular architectural style
that structures an application as a collection of loosely-coupled
software services that are independently deployable [22]. Mi-
croservices is an approach to service-oriented architecture

(SOA) [9] that emphasizes building services around business
capabilities and using lightweight communication mecha-
nisms like HTTP.

A business capability usually involves more than one con-
cept. Therefore, a microservice tends to aggregate more func-
tionality than a concept. For example, an e-commerce site
using microservices might have a customer feedback service
that aggregates together reviews and ratings, while in Déjà
Vu, reviews and ratings would be separate concepts.

Another difference is that, in practice, microservices pro-
vide back-end functionality only. Even in those cases in
which microservices are full stack,14, 15 developers have to
write complex code to coordinate between different services.
In Déjà Vu, the developer has only to specify what actions
need to occur in a transaction, and Déjà Vu will take care of
coordinating between the different concept back-ends.
Déjà Vu can thus be viewed as an attempt to realize a

microservices architecture with full-stack microservices that
are more granular, easier to combine, and generic enough to
be reused in multiple applications or in a single application
multiple times.

Entity-Component-System (ECS). ECS [1] is an architec-
tural pattern used in the development of computer games
and other real-time interactive systems. In ECS, an entity
(ID) is partitioned into multiple components (the raw data of
one aspect of the entity). The code that implements certain
functionality is located in a system, which can operate on
multiple components. A concept component is like an ECS’s
system in the sense that it implements certain functionality
that operates on the raw data of one aspect of the entity.
But, unlike a system, a concept component can only interact
with one aspect of the entity (because it can’t communicate
with other concepts). App components are perhaps more like
ECS’s systems (because they can operate on more than one
aspect of the entity), but an app component, unlike a system,
can’t operate on the raw data of one aspect directly—it can
only do so through concept components.

5.3 CMSs and Low-Code Platforms
As discussed in §1.2, the plug-ins of CMSs and low-code
platforms lack a generic composition mechanism. While
plug-ins are full-stack like concepts, getting different plug-
ins to work together can require a lot of effort.

5.4 Web Frameworks
There aremany software frameworks and libraries to support
web development. Some focus on the client-side development
(e.g., Angular, React and Vue16) and others on the server

14https://micro-frontends.org/
15http://scs-architecture.org/
16https://vuejs.org/

91

https://micro-frontends.org/
http://scs-architecture.org/
https://vuejs.org/

Onward! ’19, October 23–24, 2019, Athens, Greece Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and Barry A. McNamara III

side (e.g., Rails17 and Django18). Full-stack frameworks (e.g.,
Meteor19) and tierless web programming languages (e.g.,
[6, 7, 27]) provide support for both.
The essential difference between web frameworks and

Déjà Vu, is that web frameworks are designed to be general
purpose and require you to write all the logic of end-user
behavior yourself. The benefit is that any app can be built
using web frameworks (not just what can be built with the
catalog). The drawback is that each concept has to be imple-
mented anew. Even if full-stack components implementing
a particular concept exist (e.g., those provided by Disqus for
comments), or if some elements of a concept implementa-
tion can be obtained from a library, you still have to write
complex client- and server-side code to fill in the missing
parts, or to integrate the functionality with the rest of the
app.
Our template language is, by design, similar to popular

template languages like the one used in Angular or React’s
JSX. For example, components are included by name as if
they were standard HTML elements; and the user can bind an
expression to an input, which will recompute and update the
target input property when data changes. The difference lies
in the fact that Déjà Vu components have an eval and exec
action, and that there are different types of components (tx
and non-tx) that the user can create to determine behavior—
without having to write any JavaScript.

5.5 Design Patterns
Concepts provide a recipe for implementing a solution that
satisfies a particular purpose. In this sense, they are related
to Alexander’s design patterns [2], analysis patterns [11],
or the more implementation-centric patterns of OOP [12].
Unlike these, concepts not only describe a solution but they
make it tangible: they embody the design pattern, and can
be readily executed and combined.

The programmer’s apprentice project [25] includes a cata-
log of commonly recurring structures in code, requirements,
or other phases of software development. These structures,
like our concepts, capture and implement a common pat-
tern. But our concepts capture higher-level aggregations of
behavior.

6 Conclusion and Future Work
Déjà Vu is a new platform for assembling web apps by con-
figuring and composing concepts drawn from a catalog. Our
work so far has demonstrated the viability of our approach to
build web applications. The concept composition mechanism
is simple and requires writing no procedural code.

Moreover, the configuration and composition of concepts
is amenable to graphical representations and suitable for a

17https://rubyonrails.org/
18https://www.djangoproject.com/
19https://www.meteor.com/

graphical programming environment since concept compo-
nents are GUI elements. Together with the development of
the platform, we have been developing such an environment.
Coupled with a rich catalog, a graphical environment for
Déjà Vu could allow app developers to build applications
with rich behavior, without writing any binding or configu-
ration code at all.

Acknowledgments
Thank you to our anonymous reviewers and to our shep-
herd, Thomas LaToza, whose insightful critique and guidance
greatly improved this paper. Thanks also to the undergradu-
ate students that contributed to our project through MIT’s
UROP program: Yunyi Zhu, Shinjini Saha, John Parsons,
Stacy Ho, Teddy Katz, and Eric Manzi. This research was
funded in part by the International Design Center, a collabo-
ration between MIT and SUTD (the Singapore University of
Technology and Design).

References
[1] T. Alatalo. 2011. An Entity-Component Model for Extensible Virtual

Worlds. IEEE Internet Computing 15, 5 (Sep. 2011), 30–37. https:
//doi.org/10.1109/MIC.2011.82

[2] C. Alexander, S. Ishikawa, andM. Silverstein. 1977. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press USA.

[3] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

[4] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2003. Scaling
Step-wise Refinement. In Proceedings of the 25th International Con-
ference on Software Engineering (ICSE ’03). IEEE Computer Society,
Washington, DC, USA, 187–197. http://dl.acm.org/citation.cfm?id=
776816.776839

[5] Gilad Bracha and William Cook. 1990. Mixin-based Inheritance. In
Proceedings of the European Conference on Object-oriented Programming
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA/ECOOP ’90). ACM, New York, NY, USA, 303–311. https:
//doi.org/10.1145/97945.97982

[6] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming
the Web. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’15). ACM,
New York, NY, USA, 153–165. https://doi.org/10.1145/2676726.2677004

[7] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.
Links: Web Programming Without Tiers. In Proceedings of the 5th
International Conference on Formal Methods for Components and Objects
(FMCO’06). Springer-Verlag, Berlin, Heidelberg, 266–296. http://dl.
acm.org/citation.cfm?id=1777707.1777724

[8] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew P Black. 2006. Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS)
28, 2 (2006), 331–388.

[9] Thomas Erl. 1900. Service-oriented architecture: concepts, technology,
and design. Pearson Education India.

[10] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998.
Classes and Mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98). ACM,
New York, NY, USA, 171–183. https://doi.org/10.1145/268946.268961

[11] Martin Fowler. 1997. Analysis patterns: reusable object models. Addison-
Wesley Professional.

92

https://rubyonrails.org/
https://www.djangoproject.com/
https://www.meteor.com/
https://doi.org/10.1109/MIC.2011.82
https://doi.org/10.1109/MIC.2011.82
http://dl.acm.org/citation.cfm?id=776816.776839
http://dl.acm.org/citation.cfm?id=776816.776839
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/2676726.2677004
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dl.acm.org/citation.cfm?id=1777707.1777724
https://doi.org/10.1145/268946.268961

Declarative Assembly of Web Applications from Predefined Concepts Onward! ’19, October 23–24, 2019, Athens, Greece

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[13] David Garlan and David Notkin. 1991. Formalizing design spaces:
Implicit invocation mechanisms. In VDM’91 Formal Software Develop-
ment Methods. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg,
31–44.

[14] David Harel, Assaf Marron, and Gera Weiss. 2012. Behavioral Pro-
gramming. Commun. ACM 55, 7 (July 2012), 90–100. https://doi.org/
10.1145/2209249.2209270

[15] William Harrison and Harold Ossher. 1993. Subject-oriented Pro-
gramming: A Critique of Pure Objects. In Proceedings of the Eighth
Annual Conference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA ’93). ACM, New York, NY, USA, 411–428.
https://doi.org/10.1145/165854.165932

[16] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language
primitives and type discipline for structured communication-based
programming. In Programming Languages and Systems, Chris Hankin
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–138.

[17] Daniel Jackson. 2015. Towards a Theory of Conceptual Design for
Software. In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!)
(Onward! 2015). ACM, New York, NY, USA, 282–296. https://doi.org/
10.1145/2814228.2814248

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
oriented programming. In ECOOP’97 — Object-Oriented Programming,
Mehmet Akşit and SatoshiMatsuoka (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 220–242.

[19] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object
Spreadsheets: A New Computational Model for End-user Development
of Data-centric Web Applications. In Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2016). ACM, New York, NY,
USA, 112–127. https://doi.org/10.1145/2986012.2986018

[20] M Douglas McIlroy. 1968. Mass-produced software components. In
Proceedings of the 1st International Conference on Software Engineering,
Garmisch Pattenkirchen, Germany. 88–98.

[21] Joseph P. Near and Daniel Jackson. 2016. Finding Security Bugs inWeb
Applications Using a Catalog of Access Control Patterns. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 947–958. https://doi.org/10.1145/2884781.
2884836

[22] Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media,
Inc.

[23] James Noble and Robert Biddle. 2002. Notes on postmodern program-
ming. In Proceedings of the Onward Track at OOPSLA, Vol. 2. 49–71.

[24] James Noble and Robert Biddle. 2004. Notes on Notes on Postmodern
Programming. SIGPLAN Not. 39, 12 (Dec. 2004), 40–56. https://doi.
org/10.1145/1052883.1052890

[25] Charles Rich and Richard C. Waters. 1988. The Programmer’s Ap-
prentice: A Research Overview. Computer 21, 11 (Nov. 1988), 10–25.
https://doi.org/10.1109/2.86782

[26] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P
Black. 2003. Traits: Composable units of behaviour. In ECOOP 2003 –
Object-Oriented Programming, Luca Cardelli (Ed.). Springer, Springer
Berlin Heidelberg, Berlin, Heidelberg, 248–274.

[27] Manuel Serrano and Vincent Prunet. 2016. A Glimpse of Hopjs. In
Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2016). ACM, New York, NY, USA, 180–192.
https://doi.org/10.1145/2951913.2951916

[28] Guy L Steele. 1999. Growing a language. Higher-Order and Symbolic
Computation 12, 3 (1999), 221–236.

[29] Kevin J. Sullivan and David Notkin. 1992. Reconciling Environment
Integration and Software Evolution. ACM Trans. Softw. Eng. Methodol.
1, 3 (July 1992), 229–268. https://doi.org/10.1145/131736.131744

[30] Lea Verou, Amy X. Zhang, and David R. Karger. 2016. Mavo: Creating
Interactive Data-Driven Web Applications by Authoring HTML. In
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology (UIST ’16). ACM, New York, NY, USA, 483–496. https:
//doi.org/10.1145/2984511.2984551

93

https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1145/165854.165932
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2986012.2986018
https://doi.org/10.1145/2884781.2884836
https://doi.org/10.1145/2884781.2884836
https://doi.org/10.1145/1052883.1052890
https://doi.org/10.1145/1052883.1052890
https://doi.org/10.1109/2.86782
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/131736.131744
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/2984511.2984551

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Building Web Apps: The Status Quo
	1.3 Déjà Vu's Approach
	1.4 Contributions

	2 Building Apps with Déjà Vu
	2.1 Including and Configuring Concepts
	2.2 Linking Components
	2.3 Specifying Security Policies

	3 Prototype Implementation
	3.1 Front-End Library
	3.2 Gateway Server
	3.3 Compiler
	3.4 Concept Catalog

	4 Evaluation
	4.1 Comparison with Standard Approaches
	4.2 Case Study

	5 Related Work
	5.1 Programming Paradigms
	5.2 Architectural Patterns
	5.3 CMSs and Low-Code Platforms
	5.4 Web Frameworks
	5.5 Design Patterns

	6 Conclusion and Future Work
	Acknowledgments
	References

