
Parallel Bounded Analysis in Code with Rich Invariants by
Refinement of Field Bounds

Nicolás Rosner,
FCEyN - UBA

Buenos Aires, Argentina

Juan Galeotti,
Saarland University

Saarbrücken, Germany

Santiago Bermúdez,
Guido Marucci Blas,

Santiago Perez De Rosso,
Lucas Pizzagalli,
Luciano Zemín,
Marcelo F. Frias

ITBA
Buenos Aires, Argentina

ABSTRACT
In this article we present a novel technique for automated
parallel bug-finding based on the sequential analysis tool
TACO. TACO is a tool based on SAT-solving for efficient bug-
finding in Java code with rich class invariants. It prunes the
SAT-solver’s search space by introducing precise symmetry-
breaking predicates and bounding the relational semantics
of Java class fields. The bounds computed by TACO gen-
erally include a substantial amount of nondeterminism; its
reduction allows us to split the original analysis into disjoint
subproblems. We discuss the soundness and completeness of
the decomposition. Furthermore, we present experimental
results showing that MUCHO-TACO, our tool which imple-
ments this technique, yields significant speed-ups over TACO
on commodity cluster hardware.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.2.1 [Software Engineering]: Specifications;
D.2.4 [Software Engineering]: Program verification—Class
invariants, programming by contract, formal methods.

General Terms
Verification, Languages

Keywords
Static analysis, SAT-based code analysis, Alloy, DynAlloy.

1. INTRODUCTION
Finding bugs is a key activity in software development.

Even well-engineered systems are likely to contain faults.
Many can be detected by testing the system, but since test-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’13, July 15–20, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2159-4/13/07 ...$15.00.

ing only exercises a finite, usually small number of execu-
tions, many faults can go undetected.

Bounded Exhaustive Analysis (BEA) techniques and tools
complement traditional testing. BEA approaches consist of
testing a system using every possible input among those that
satisfy certain imposed bounds.

Various kinds of bounds and combinations thereof can
be considered. Kiasan [9], a tool for test input genera-
tion, bounds the maximum length of reference chains in the
memory heap (called the k-bound). Korat [5], a tool aimed
at generating non-isomorphic test inputs, bounds the num-
ber of object references per class. JForge [10], Miniatur [3]
and TACO [12, 13], bug-finding tools based on SAT-solving,
bound the number of object references as well as the number
of loop iterations that the system under test may perform.

A tool capable of handling sufficiently large bounds would
render testing obsolete. Although we are not there yet, cur-
rent BEA tools can, for instance, achieve optimal mutant-
killing in complex container classes [12].

TACO (Translation of Annotated COde) is a BEA tool
that pushed the barriers of the field by allowing roughly
twice the size of the data domains that state-of-the-art tools
like JForge can handle – a significant improvement consid-
ering that analysis times generally grow exponentially as
bounds are increased.

Classes that are constrained by rich class invariants often
give rise to deceptively simple-looking methods. Such meth-
ods frequently prove to be harder than expected to get right
because the code must preserve the complex constraints in-
duced by the invariants. Typical examples of such classes are
pointer-based generic data structures like the ones studied
in this article.

Analysis at the system level boils down to analysis at
the method level through the use of modular analysis tech-
niques as presented, for instance, in [10]. The real bottle-
neck, then, is analysis at the intraprocedural level. Assum-
ing adequately modularized systems, complexity rarely re-
mains proportional to the number of lines of code. Instead,
it seems to reflect something inherently complex about the
code itself. We claim that this kind of complexity is usually
captured by the richness of the class invariants and method
contracts. Consequently, the techniques and optimizations
we present are primarily aimed at improving analyzability of
methods with nontrivial contracts within classes with non-
trivial invariants.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’13, July 15–20, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2159-4/13/07...$15.00
http://dx.doi.org/10.1145/2483760.2483770

23

Building upon our previous work on TACO, we introduce
a novel technique for its parallelization and present experi-
mental results showing significant speed-ups. The MUCHO-
TACO tool allows users to leverage existing idle hardware
for fast verification of correct code whose sequential analy-
sis with TACO would potentially require hundreds of hours.
Even more extreme speed-ups are commonplace when ana-
lyzing faulty code.

To the best of our knowledge, no other tools for scope-
bounded exhaustive analysis are able to handle comparable
scope magnitudes for equivalent problems. We elaborate on
this in Section 5.

Unlike many techniques either implemented as one-off pro-
totypes, guarded by strict licensing or for some other reason
unobtainable for experimental comparison, MUCHO-TACO
is available for unrestricted download [31].

The article is organized as follows. In Section 2 we de-
scribe the TACO technique. In Section 3 we present the
MUCHO-TACO technique as well as 3 optimizations. In Sec-
tion 4 we present experiments showing that MUCHO-TACO
can achieve significant speed-ups during analysis. In Section
5 we discuss related work. Finally, in Section 6 we present
our conclusions and some proposals for further work.

2. TACO
TACO is a state-of-the-art BEA tool for finding faults in

Java programs. In [12] we showed that, for classes with rich
class invariants, TACO outperforms the bug-finding abilities
of JForge [10], Kiasan [9], ESC/Java2 [6], Java PathFinder
[28] and Jahob [4]. This section is an overview of TACO; see
[12, 13] for a detailed presentation.

2.1 Symmetry Breaking + Tight Bounds
User input to TACO consists of Java code annotated with

JML [11] requires/ensures contracts and possibly with class
invariants. The TACO tool produces a propositional for-
mula, and uses a SAT-solver to search for a valuation that
satisfies it. If one is found, a Java execution trace violating
the contract is extracted from it.

Although a very similar approach is followed by tools like
JForge, at least two important differences are worth noting.
First, during the translation process TACO adds automati-
cally generated symmetry-breaking predicates that canoni-
calize the Java memory heap representation. This alone al-
ready yields significant improvements in analysis time. We
provide more details in Section 2.3. Second, using these
predicates TACO pre-computes tight upper bounds for the
relational semantics of Java fields, which allow for the elim-
ination of numerous primary variables during translation to
a propositional formula, resulting in considerable additional
savings in analysis time. We provide more details about this
in Section 2.4.

2.2 Brief Introduction to Alloy and Kodkod
TACO uses Alloy [16] and its back-end Kodkod [26] as

intermediate languages during the translation of annotated
code to a propositional formula. In this section we present
an overview of the relevant features.

Alloy specifications are called models. From a Java class
for singly-linked lists, TACO produces an Alloy model con-
taining the Alloy signature hierarchy shown in Fig. 1.

Signatures (identified by the keyword sig in Alloy) denote
sets of objects. Signatures whose declaration is preceded by

sig Object {}
one sig null {}
sig List extends Object {

head : one (Node + null) }
sig Node extends Object {

next : one (Node + null) }

Figure 1: Type hierarchy for singly-linked lists in
Alloy.

the keyword one (as is the case with null in Fig. 1) denote
singleton sets. Signatures are akin to Java classes, and may
contain fields, which denote binary relations. For example,
according to Fig. 1,

head ⊆ List × (Node + null), next ⊆ Node × (Node + null).

The keyword one preceding the codomain definitions forces
the binary relations to be total functions. Thus,

head : List → (Node + null),
next : Node → (Node + null).

Signature extension, denoted by the extends keyword,
constrains objects from the extending signature to be part
of the extended signature.

Axioms are added in Alloy using the fact construct. For
instance, the following fact constrains all lists to be acyclic.
(The Alloy operators * and ^ stand for reflexive-transitive
closure and for transitive closure, respectively.)

fact Acyclic { all l : List, n : Node |
n in List.head.*next implies n !in n.^next }

Alloy models may include assertions, which are properties
to be checked by the Alloy Analyzer [16]. The following
(false) assertion claims that all lists are nonempty:

assert NoEmptyLists {all l:List | l.head != null}

Before checking an assertion, the user needs to provide
signature size bounds (called the scope of the analysis in
Alloy jargon). For instance, we may write

check NoEmptyLists for 5

to check whether the property holds over all possible config-
urations where up to 5 lists and nodes are allowed.

Kodkod is used by the Alloy Analyzer during the trans-
lation of an Alloy model to a propositional formula. One
of its distinguishing features is support for partial instances:
for each Alloy signature field f , Kodkod also accepts two
relations Lf (the lower bound for field f) and Uf (the upper
bound for field f). The presence of nontrivial lower and/or
upper bounds constrains Alloy models to satisfy the restric-
tion Lf ⊆ f ⊆ Uf . We will make use of this inclusion in
Section 2.4, when explaining how TACO tight bounds are
computed and exploited.

2.3 Symmetry Breaking in Java Heaps
It is shown in [12, 13] that adding appropriate symmetry-

breaking predicates can improve analysis times by several
orders of magnitude. In this section we present a brief in-
troduction to the symmetry-breaking predicates employed
by our technique.

Let us consider a memory heap containing the singly-
linked list depicted in Fig. 2(a). Solid arrows link nodes to
nodes referenced through field next, whereas dotted ones link

24

nodes to the values that they store. In Fig. 2(b) we show
the same heap, except for the fact that labels (i.e. mem-
ory locations) have been permuted via {N0 7→ N4, N1 7→
N3, N2 7→ N2, N3 7→ N1, N4 7→ N0}. The nodes of list (b)
are located at different places in memory than those of (a).
Other than that, both should be considered essentially the
same list, since they contain the same elements in the same
order. This becomes evident once we compare Fig. 2(a)
with Fig. 2(c). Such permutations over domains are called
symmetries, and it is well known [15] that removing them
generally improves the performance of SAT-solvers.

If the code under analysis with TACO contains a bug,
TACO retrieves an execution trace exposing the failure. As
part of such a trace, TACO provides an initial state. There-
fore, the SAT-solver must be able to find this initial state
(as well as the rest of the trace).

As explained in Section 2.2, Alloy performs analyses within
given scopes. Let us assume a scope of 5 for the Node do-
main; hence, all initial states considered by the SAT-solver
will involve at most 5 Node. Among the states that will
need to be considered by the solver are those illustrated by
Figs. 2(a) and (b). But, as we have already argued, these
represent essentially the same list. In [12] we introduced
symmetry-breaking axioms that remove symmetries from
the memory heap representation in Alloy. These predicates
complement the lower-level symmetry-breaking axioms al-
ready included by the Alloy Analyzer [15], and remove all
symmetries from the Alloy models generated by TACO from
Java classes. For instance, of the lists shown in Fig. 2 and all
other similar isomorphisms, only (a) is considered by TACO.

The predicates are introduced by instrumenting the in-
termediate Alloy model. As part of the instrumentation,
constants are introduced in the model. For the singly-linked
lists example, assuming a scope of 5 Node:

one sig N0, N1, N2, N3, N4 extends Node {}

These constants will be used to compute tight bounds in the
manner described in the following section.

List0

N0

N1

N2

N3

N4

V0

V1

V2

V3

V4

null

(b)

List0

N4

N3

N2

N1

N0

V0

V1

V2

V3

V4

null

(c)

List0

N0

N1

N2

N3

N4

V0

V1

V2

V3

V4

null

(a)

Figure 2: Isomorphic lists: (a) Original list. (b) A
permutation over the nodes. (c) A redrawing of list
(b).

2.4 Computing Tight Bounds
In the context of BEA tools and techniques, the term

bound tends to acquire different (and often conflicting) mean-
ings. Since TACO uses Alloy as an intermediate language,
Alloy scopes, which bound the size of each data domain as
seen in the previous section, become just as essential for
TACO parametrization. Users of the TACO tool need to de-
cide on appropriate scope values prior to analysis. Another
relevant bound in TACO is the loop unrolling bound – a pa-
rameter that limits the maximum number of loop iterations
allowed in the code under analysis. TACO users are expected
to choose this value beforehand, according to their needs.

By TACO bounds or tight bounds, however, we mean nei-
ther of the above. TACO bounds are automatically com-
puted (as opposed to user-specified) and relational (as op-
posed to scalar-valued) bounds, largely based on the Kodkod
inclusion described at the end of Section 2.2.

To clarify what we do mean by TACO tight bounds we will
now provide some further insight on how TACO models Java
class fields in Alloy and Kodkod. We adopt the modeling of
Java fields originally introduced in [17].

Let us consider the simplistic Java classes for binary trees
presented in Fig. 3. (We will only show how to model class
fields; translation of code is explained in [12].) From the
classes shown in Fig. 3, TACO produces the Alloy signa-
tures presented in Fig. 4. According to Alloy semantics,

public class BinTree {
TreeNode root; }

public class TreeNode {
TreeNode left;
int key;
TreeNode right; }

Figure 3: Sample Java classes representing binary
trees.

abstract sig Object {}
one sig null {}
sig BinTree extends Object {

root : TreeNode + null }
sig TreeNode extends Object {

left : TreeNode + null,
key : Int,
right : TreeNode + null }

Figure 4: Alloy signature hierarchy for binary trees.

the abstract signature Object only contains objects from
its extending signatures. Signature fields, such as root or
left are modeled as total functions (more precisely, due to
the relational nature of Alloy, as total functional relations).
Recalling that in denotes set inclusion and -> denotes Carte-
sian product, the typing of fields lets us infer that

root in BinTree -> (TreeNode + null),
left in TreeNode -> (TreeNode + null),
key in TreeNode -> Int,

right in TreeNode -> (TreeNode + null).

Note that, as a result, Alloy fields become bounded in a
relational sense – each field must be fully contained within
some concrete set of pairs.

25

As explained at the end of Section 2.3, if we analyze a
BinTree method with a scope of 5 TreeNode, the following
signatures are added to the instrumented model:

one sig TN0, TN1, TN2, TN3, TN4 extends TreeNode {}

Using the trivial upper bounds derived from typing as a
starting point, TACO automatically computes tight bounds
by removing pairs that could never be part of a field due to
violations of the class invariants. The implementation of the
bound-tightening procedure is explained in [12, 13].

In terms of our running example, several spurious pairs
can be identified as such, and thus automatically removed
from the upper bound by the TACO tool. For instance, since
the class invariant forces binary trees to be acyclic, pairs
like TN0->TN0, . . . , TN4->TN4 can never be present in left or
right, and are therefore deleted.

Similarly, the symmetry-breaking predicates impose an or-
dering in the way TreeNode objects relate to each other. In
our example, the symmetry-breaking axioms force all nodes
to be labeled as per a breadth-first search traversal, with
TN0 as the root node. Hence, the pair TN0->TN2 can never
be contained in field left: if any node is to be the left child
of TN0, it must be TN1. Similarly, all pairs TN0->TNi (for
i > 1) are automatically removed as well.

For red-black trees (a variant of binary trees) with scope
5 in signature TreeNode, TACO reduces the total number of
pairs bounding fields root, left and right from 66 to 22.

Bound tightening heavily profits from the constraints in-
troduced by the class invariant: the richer the class invari-
ant, the more effective the technique will be. We consider
this a strength rather than a limitation of the technique: the
savings tend to favor more intricate code.

In essence, what we mean by TACO tight bound is a set of
pairs that bounds the possible interpretations of signature
fields and does not contain any spurious pair.

Our interest in tightening field bounds is because during
translation to a propositional formula each feasible pair is
mapped to a fresh propositional variable. The tighter the
bounds, the fewer propositional variables will need to be
allocated to represent the resulting formula. Since the worst-
case time complexity of the SAT problem is exponential in
the number of variables, this reduction is beneficial [12].

3. MUCHO-TACO
MUCHO-TACO is the novel technique that we introduce

in this article. It is a simple yet very effective technique
for parallelizing bug-finding. It profits from the existence of
TACO tight bounds, and allows us to split a given problem
into a number of independent subproblems.

We describe the technique in Section 3.1. In Sections 3.2–
3.4 we present optimizations that allow for significant re-
ductions in the number of generated subproblems. In Sec-
tion 3.5 we discuss some of the most relevant implementation
details. Finally, in Section 3.6 we prove the soundness and
completeness of the technique.

3.1 The MUCHO-TACO Technique
The hypothesis behind the TACO technique is that

the fewer propositional variables required to rep-
resent the initial state of a system, the better the
performance of the SAT-solver during analysis.

This conjecture has already been tested in the context of
TACO, and the results were reported in [12]. The MUCHO-
TACO technique takes another step in the same direction by
attempting to further reduce the number of propositional
variables present in the initial state.

In Section 2.4 we described TACO tight bounds. As a
running example, we show in Fig. 5 the bounds for fields
left and right for red-black trees with up to 5 Node.

left in right in
N0->N1 + N0->null N0->N1 + N0->N2 + N0->null
+ N1->N3 + N1->null + N1->N3 + N1->N4 + N1->null
+ N2->N3 + N2->N4 + N2->null + N2->N3 + N2->N4 + N2->null
+ N3->null + N3->null
+ N4->null + N4->null

Figure 5: TACO tight bound for fields left and right

from red-black trees. Scope 5.

Let us concentrate on field left; the same reasoning will
apply to field right. The field is contained in a binary rela-
tion on signature Node which, due to the bound tightening
procedure implemented in TACO, is substantially smaller
than Node × (Node + null). This is the upper bound rela-
tion Uleft we will use in Kodkod. Notice that Uleft is non-
deterministic: for instance, node N0 is related both to node
N1 and to the value null. At the same time, signature fields
modeling Java fields have to be total functions. Thus, each
instance considered by the SAT-solver contains total func-
tional instances of field left. Due to the TACO bounds,
these functional instances must be contained in Uleft.

The MUCHO-TACO technique splits the original model by
reducing the nondeterminism in each field’s bounds. In our
example, this could mean removing some of the nondeter-
minism from Uleft and Uright. In practice, this is carried out
by choosing a number n of nodes (let us choose n = 2 for our
example) and ensuring the removal of any nondeterministic
choices for nodes N0 through Nn−1. Before further details,
let us introduce some notation.

Notation 3.1. Given a node Ni and a field f, we denote
by Ran(Ni, f) the set {x | Ni→ x ∈ Uf}.

Once the number n is chosen, we proceed as follows: For
each 0 ≤ i < n we select a single ei ∈ Ran(Ni, f) and remove
all pairs with domain Ni, with the sole exception of pair
Ni → ei. We thus generate a set of upper bounds, each
tighter than Uf. The tighter upper bounds for field left

obtained by removing nondeterminism from nodes N0 and
N1 (since we chose n = 2) are shown in Fig. 6.

N0->N1 N0->null N0->N1 N0->null
+N1->N3 +N1->N3 +N1->null +N1->null
+N2->N3 +N2->N3 +N2->N3 +N2->N3
+N2->N4 +N2->N4 +N2->N4 +N2->N4
+N2->null +N2->null +N2->null +N2->null
+N3->null +N3->null +N3->null +N3->null
+N4->null +N4->null +N4->null +N4->null

Figure 6: Tighter upper bounds for field left.

More generally, an initial bound B can be split into some
number of tighter bounds B1, . . . , Bk. The new bounds pro-
duced by this algorithm define state spaces that do not in-
tersect. Let us consider the first two bounds for left shown

26

in Fig. 6, calling them B1 and B2, respectively. Any config-
uration consistent with B1 must satisfy N0.left = N1, while
configurations consistent with B2 must satisfy N0.left =
null. The resulting k models can be analyzed concurrently.

n #subprob.
2 36
3 720
4 14, 400
5 604, 800
6 33, 868, 800

Figure 7: Number of subproblems generated as n
increases. Red-black trees, scope 15.

Since the amount of available hardware will always be
limited, only a small number of nodes may be subjected to
elimination of nondeterminism, lest the number of generated
subproblems render the approach infeasible. For instance,
Fig. 7 shows the progression for our red-black trees exam-
ple; notice how fast the number of subproblems increases.
Hence we maintain the number of subproblems that may be
generated, which indirectly bounds n, below a certain limit.
We discuss how to adjust this limit in Section 3.5.

However, if we remove nondeterminism only a small num-
ber of nodes at a time, it could be the case that too many
models resulting from a split still remain too hard to be
tackled directly (that is, within acceptable impact on total
user-perceived runtime). We therefore associate a timeout
with each analysis. If an attempt to solve a subproblem SP
times out, the associated bound BSP is used to split it again
using the MUCHO-TACO technique. We discuss election of
timeout values in Section 3.5.

The algorithm is implemented using a master/worker ar-
chitecture. High-level pseudocode outlining the behavior of
both kinds of processes is shown in Fig. 8.

3.2 Optimization 1: SBP-Guided Configura-
tions

The number of subproblems generated when splitting TACO
bounds using a naive algorithm grows too fast. Fig. 7 shows
that our Alloy model for red-black trees, using a scope of
15 Node, would need to be split into more than 30 million
subproblems for as little as n = 6.

As seen in Section 2.3, the intermediate Alloy model is
instrumented with symmetry-breaking predicates. These
predicates impose a canonical ordering on the nodes in the
models considered by the SAT-solver. For instance, for bi-
nary trees, the tree in Fig. 9(a) is valid according to the
axioms, but the one depicted in Fig. 9(b) is not. The latter
includes several violations, namely, the root node is not N0,
some nodes are missing (if a node is reachable, any nodes
with smaller indices must be as well), and nodes are not
sorted in breadth-first-search order.

We propose to restrict the splitting procedure so as to pro-
duce only configurations that satisfy the symmetry-breaking
axioms. This modification implies, for instance, that the
number of subproblems generated for red-black trees drops
from 33,868,800 to 36,136. More importantly, since it re-
quires no user input, it has been fully automated.

Table 1 reports reductions achieved on the number of gen-
erated subproblems using scope 20, for some of our bench-

MASTER
split initial problem
do:

on task request from a worker:
mark worker as idle

on any open branch and any idle worker:
assign branch to worker
mark branch as active, worker as busy

on SAT report from a worker:
send immediate abort msg to any busy workers
report SAT verdict and send model to user

on UNSAT report from a worker:
mark branch as closed

on TIMEOUT for an active branch:
send abort msg to worker
mark and enqueue branch to be split

on few branches open and any to be split:
1. using tasks queue load, determine number of

input nodes in bound to make deterministic
2. generate new open subproblems with tighter bounds

by removing nondeterminism from the chosen nodes.
If no more nondeterminism remains in the bounds,
enqueue the subproblem without a timeout.

until all branches closed or any SAT branch found

WORKER[i]
do:

send task request to master
on new task assignment:

launch solver on light subproblem
if result is UNSAT:

report UNSAT_EASY result to master
otherwise:

launch solver on full subproblem
while not (solver finished or timeout reached):

wait for solver result or msg from master
report SAT, UNSAT or TIMEOUT result to master

until exit-to-shell message received from master

Figure 8: Pseudocode for Master and Workers.

mark classes. The reductions are significant, often exceeding
two orders of magnitude and sometimes even reaching three.

3.3 Optimization 2: Prevent Forbidden Alias-
ing

Many object-oriented classes contain fields that cannot
produce aliases. For instance, fields left and right in bi-
nary trees will never reference the same object. Note that
such conclusions cannot always be inferred from structural
properties of a class; they usually follow from the class in-
variant. In our benchmark, fields left and right cannot be
aliased in classes BSTree, RBTree, and AVLTree. Similarly,
fields sibling and child cannot be aliased in class BinHeap,
and field next cannot be aliased (with itself) in class SLList.

We propose to mine this kind of information about poten-
tial aliasing in an automatic fashion, determining whether
aliasing may or may not arise

• when f1 and f2 are different fields whose codomains
intersect, and

• when f is a field and we consider different inputs for
f (in this case we check whether a single field can pro-
duce aliases).

The first situation occurs when we consider fields like left
and right, or root and left, in tree-like structures. The
second situation arises when we consider a single field, such
as next in list-like structures, or field left in tree-like ones,
but different input values.

27

null null null null

null null

N1

N3 N2

N4 N6

null null null null

null null

N0

N1 N2

N3 N4

(a) (b)

Figure 9: Binary trees satisfying (a) / violating (b)
the symmetry-breaking axioms.

To find out whether two different fields f1 : T1 → T and
f2 : T2 → T can yield aliases, we check the following asser-
tion (FReach, defined in [12], characterizes the set of objects
reachable in a memory heap from its roots):

assert differentFields { all a : T1, b : T2 |
a + b in FReach implies no (a.f1 & b.f2) }

To determine whether a field f : T′ → T can produce
aliases with itself, we check the following assertion:

assert singleField { all disj a, b : T’ |
a + b in FReach implies no (a.f & b.f) }

In Section 4.3 we will show experimental results estimat-
ing the additional time needed to automatically mine such
information before starting the main analysis. As an ex-
ample, our tests for class BSTree involved considering the
following pairs of fields:

• root and root, root and left, root and right, left
and right, left and left, and right and right.

In all cases the answer was negative (no aliasing possible).
If we now consider class TreeSet, field parent forces us to
also check whether it would be possible to introduce aliasing
through the pairs of fields:

• parent and root, parent and left, parent and right,
and parent and parent.

In all these latter cases we determined that aliasing can be
introduced. Since automated aliasing detection should take
place before the actual parallel analysis of the original prob-
lem can be carried out, we can assume that cluster nodes
assigned to the job are still idle, i.e. available for us to run
the preliminary aliasing analyses in parallel. This is why in
Table 2 we report, for each class and scope, the maximum
analysis time required over all different combinations that
need to be considered. Since their number is usually small
(in our benchmark, no more than 10 for any given class and
fixed scope), it is expected that, at least, all the analyses for
a given class and scope can be run in parallel.

Once aliasing information is determined, MUCHO-TACO
will only generate subproblems whose bound configurations
respect those aliasing restrictions. Table 1 shows the impact
on the number of subproblems generated after enabling this
optimization. As was the case for the optimization from Sec-
tion 3.2, we use a scope of 20 Node objects in all cases. In
most of them, further reductions of over one order of magni-
tude in the number of generated subproblems are achieved.

3.4 Optimization 3: Remove Spurious Sub-
problems

Let us consider the TACO tight bound for red-black trees
with scope 7 shown in Fig. 10(a). In Fig. 10(b) we present
a tighter bound obtained by applying the MUCHO-TACO
techniques on in, with n = 5.

The bound shown in (b) satisfies the conditions enforced
by both of the optimizations proposed so far. As shown in
Fig. 11, the partial heap on the nodes N0, . . . , N5 respects the
ordering imposed by the symmetry-breaking axioms, and no
aliasing occurs.

left in N0->N1 + N0->null left in N0->N1
+ N1->N3 + N1->null + N1->N3
+ N2->N3 + N2->N4 + N2->N5 + N2->null

+ N2->null + N3->null
+ N3->N5 + N3->N6 + N3->null + N4->null
+ N4->N5 + N4->N6 + N4->null + N5->N6
+ N5->N6 + N5->null + N5->null
+ N6->null + N6->null

right in N0->N1 + N0->N2 right in N0->N2
+ N0->null + N1->null

+ N1->N3 + N1->N4 + N1->null + N2->N4
+ N2->N3 + N2->N4 + N2->N5 + + N3->N5

+ N2->N6 + N2->null + N4->null
+ N3->N5 + N3->N6 + N3->null + N5->N6
+ N4->N5 + N4->N6 + N4->null + N5->null
+ N5->N6 + N5->null + N6->null
+ N6->null

(a) (b)

Figure 10: (a) TACO bounds for red-black tree. (b)
Tighter bounds generated by MUCHO-TACO using
n = 5.

null

null

N0

N2

N3
null

N4

N5
null null

N1 p1

p2

Figure 11: A bound configuration generated using
the optimizations from Sections 3.2 and 3.3.

That said, notice that this partial heap instance cannot
yield a red-black tree. According to the class invariant, a
binary tree is a red-black tree if each node is either labeled
red or black, the root node is labeled black, no two consecu-
tive nodes on any path are red, and all paths from the root
node contain the same number of black nodes.

Since the path p1 (N0→ N1→ null) can contain at most
two black nodes, the following two cases arise: (1) N1 is
black, and consequently, either N3 or N5 on path p2 must be
black. Hence, path p2 contains at least three black nodes,
violating the invariant. (2) N1 is red, and path p1 has one
black node. Since N1 is red, N3 must be black. But then path
p2 contains at least two black nodes, violating the invariant.

28

Some of the subproblems generated, despite satisfying the
symmetry-breaking axioms and abiding by aliasing constraints
for their class, result in bounds that systematically violate
the class invariant.

This motivates our third optimization, which can be sum-
marized as follows: before analyzing the full version of a
subproblem SP , run a quick preliminary test to determine
satisfiability of the class invariant, using the MUCHO-TACO
bound contained in SP (but excluding the translation of any
implementation code).

If no instance is found, we know that further analysis of
SP is unnecessary: since no valid inputs exist, no valid in-
puts can lead to an invalid state.

The proposed preliminary analysis is a substantially eas-
ier problem – we have yet to come across any case where
obtaining a final (SAT or UNSAT) answer to such a test
requires more than a small fraction of a second.

Table 1 shows how the number of subproblems to be gener-
ated drops considerably for the most constrained case stud-
ies in our benchmark. This is particularly visible in cases
like TreeSet, AVLTree and BinHeap.

Table 1: Reductions in the number of subproblems
generated as automatic optimizations are enabled.
NO = no optimizations. OP1 = optimization 1 only.
OP2 = optimizations 1 and 2 combined. OP3 =
optimizations 1, 2 and 3 combined.

Class Opt n=2 n=3 n=4 n=5 n=6

SLList NO 4 8 16 32 64
OP1 3 4 5 6 7
OP2 3 4 5 6 7
OP3 3 4 5 6 7

BSTree NO 72 1,440 43,200 1,814,400 101,606,400
OP1 26 166 1,258 10,846 103,684
OP2 13 43 148 526 1,912
OP3 13 43 148 526 1,912

TreeSet NO 36 720 14,400 604,800 33,868,800
OP1 9 56 250 3,028 36,163
OP2 7 19 52 184 694
OP3 7 19 34 100 172

AVLTree NO 36 720 8,640 259,200 14,515,200
OP1 9 56 105 716 11,670
OP2 7 19 34 94 334
OP3 7 19 28 70 142

BinHeap NO 72 648 10,368 259,200 6,480,000
OP1 26 108 600 4,204 17,030
OP2 13 36 111 370 1,034
OP3 7 11 13 15 17

3.5 Implementation Details
In this section we describe some details that had signifi-

cant impact on the engineering of MUCHO-TACO.

3.5.1 Translation Overhead Issues
Translating each newly generated subproblem from the

Alloy intermediate representation to clausal form is unde-
sirable, due to the considerable overhead involved and the
fact that most of it can actually be avoided. Nevertheless,
at least during early design and prototyping, letting each
worker invoke its own instance of the Alloy Analyzer tool as
needed may seem simplest. The load should thus be reason-
ably distributed. Besides, estimating its total impact should
be a simple matter. As it turns out, it is not. This approach

does not scale well on multi-core-PC clusters, where full uti-
lization of available hardware requires multiple instances of
Alloy to (potentially) be run at any time within the same
machine. This may result in occasional interactions between
unrelated activity peaks, often injecting enough noise to vis-
ibly pollute experimental results. Over long runs, amplified
noise tends to snowball to such an extent that it becomes
virtually indistinguishable from signal.

3.5.2 Impact on Workflow
The aforementioned issues are easily mitigated but hard

to eliminate. Furthermore, the fact that merely launching
a JVM/Alloy/Kodkod/JNI/Solver toolchain is several or-
ders of magnitude more resource-demanding than spawning
a Minisat process is unlikely to change. This eventually
drove us to adopt a lower-level workflow. MUCHO-TACO
now uses the Alloy toolchain during initialization only. The
master process invokes Alloy to translate the original prob-
lem and class invariant to CNF, and all processes henceforth
operate directly on formulas at the clausal level. Once in
place, this reduced the per-solving overhead from seconds
or even minutes to just milliseconds, while load spikes, spu-
rious interactions and user-perceptible noise disappeared.

3.5.3 Dynamic Fanout Control
As mentioned in Section 3, we enforce a limit on the

number of subproblems to be generated during the bound-
tightening process. This in turn imposes a bound on the
number of nodes from which nondeterminism is removed in
the TACO bound. MUCHO-TACO uses two queues: a wait-
ingQ for tasks waiting for a worker, and a toSplitQ holding
problems that, having reached their timeouts, await being
split into easier ones. The number of tasks in waitingQ is
kept within two bounds; a lower bound on the size of the
queue determines when problems waiting to be split should
actually be split. This balances splitting of problems in
toSplitQ.

3.5.4 Self-adjusting Timeouts
In Section 3.1, where the MUCHO-TACO technique was

introduced, we mentioned that a timeout is used to stop
ongoing attempts to close a branch after some amount of
computational effort fails to produce a verdict. The actual
timeout used in the reported experiments is dynamically set
when a problem is added to waitingQ. In order to explain
how this value is set, let P be the set of subproblems that
have already been solved. For each subproblem p ∈ P , we
have TO(p) (the timeout assigned to subproblem p when it
was added to waitingQ), and AT (p) (the actual time that it
took to analyze subproblem p, possibly smaller). For a new
problem np that is being added to waitingQ, the timeout is
defined by:

TO(np) = 5 ∗
∑
p∈P

TO(p)
AT (p)

. (1)

Initial timeouts are set to 40 seconds. An upper cap to
values produced by formula (1) is preset at 240 seconds.

3.6 Soundness and Completeness
Under the assumption that the translation of code im-

plemented by TACO is correct, Theorems 3.1 and 3.2 show
that the MUCHO-TACO technique neither misses faults nor

29

reports false-positives. Proofs are not included due to space
limitations.

Theorem 3.1. (soundness) Given a problem produced by
MUCHO-TACO for which the solver returns SAT, we may re-
trieve a trace exhibiting a failure in the code under analysis.

Theorem 3.2. (completeness) If the code under analysis
has a fault that can be detected using TACO, then the fault
will be detected using MUCHO-TACO as well.

4. EVALUATION
This section is organized as follows. In Section 4.1 we de-

scribe the container classes that we used to evaluate MUCHO-
TACO. In Section 4.2 we describe the computing infrastruc-
ture that we used in the experiments. In Section 4.3 we
present the experimental data and discuss the results.

4.1 Experimental Case Studies
Our benchmark comprises the following classes: An

implementation SLList of sequences based on singly-
linked lists; BSTree: an implementation of binary search
trees used as part of a benchmark in [29]; RBTree:
the implementation of class TreeSet from java.util,
based on red-black trees; AVLTree: an implementation
of AVL trees obtained from the case study used in [2];
BinHeap: an implementation of binomial heaps used as
part of a benchmark in [29].

4.2 Hardware and Software Infrastructure
Except where otherwise indicated, experiments were

run on the CeCAR [32] cluster, which consists of 56
identical quad-core PCs featuring two Intel Dual Core
Xeon 2.67 GHz processors with 2 MB of L2 cache per
core and 2 GB main memory per host. Parallel analy-
ses were run as 16x4x10h jobs (16 nodes dedicated for
up to 10 hours) using one process per core (1 master
+ 63 workers). Parallel analyses reported in Table 4
were run as described above except for the number of
nodes (8x4x10h, 16x4x10h, 24x4x10h, etc). Sequential
analyses, such as those using TACO after computing
tight bounds, were run on a single dedicated node.

4.3 Experimental Results
All the experiments were run 5 times, and the aver-

age time is reported. Table 2 reports the analysis time
required for the automatic mining of aliasing informa-
tion proposed in Section 3.4. For any class and scope in
the benchmark, the additional time needed barely con-
tributed to the overall analysis time. The only cases
in Table 2 requiring over one minute are those of class
BSTree for scopes 15 and above. For every such scope of
said class, the analysis time using TACO and reported
in Table 3 exceeds the 10-hour timeout. Moreover, even
the analysis times using MUCHO-TACO reach the time-
out or are close to reaching it. For example, consider
BSTree.find() at scope 15, where MUCHO-TACO re-
quires 495:41 while the corresponding aliasing compu-
tations take 01:07.

Table 3 presents experimental results for the methods
in each of the container classes described in Section 3.2.
For each method and each scope we report three values.

Table 2: Time needed for mining aliasing-related
information.

Class s10 s12 s15 s17 s20

SLList 00:02 00:02 00:03 00:03 00:04
BSTree 00:06 00:17 01:07 02:43 21:07
AVLTree 00:03 00:04 00:08 00:14 01:18
TreeSet 00:04 00:05 00:08 00:12 00:31
BinHeap 00:04 00:05 00:08 00:10 00:14

The top row shows the sequential analysis time as reported
by TACO in [12]. The middle row shows the analysis time
that we measured using MUCHO-TACO. The bottom row
estimates the speed-up obtained by using MUCHO-TACO
instead of TACO. All times are expressed in mm:ss format,
and a timeout, noted TO whenever reached, is set at ten
hours. In all cases, loops were unrolled up to 10 times.

Table 3: TACO sequential time, MUCHO-TACO par-
allel time, and achieved speed-up. Loop unrolls: 10.

Class Method s10 s12 s15 s17 s20

SL contains 00:05 00:06 00:07 00:09 00:16
00:07 00:11 00:03 00:04 00:06
0.7x 0.5x 2.3x 2.2x 2.7x

insert 00:07 00:08 00:13 00:26 00:41
00:08 00:03 00:02 00:04 00:06
0.9x 2.6x 6.5x 6.5x 6.9x

remove 00:11 00:12 00:17 00:33 01:01
00:06 00:03 00:05 00:12 00:15
1.8x 4.0x 3.4x 2.7x 4.1x

BST find 114:47 TO TO TO TO
01:03 13:36 495:41 TO TO

109.3x >44.1x ��1.2x
add TO TO TO TO TO

333:57 TO TO TO TO
�1.8x

remove 32:59 TO TO TO TO
02:08 33:35 TO TO TO
15.4x >17.8x

AVL findMax 00:03 00:04 00:09 00:13 01:09
00:23 00:10 00:39 00:32 00:38
0.1x 0.4x 0.2x 0.4x 1.8x

find 00:36 01:41 08:20 33:06 179:54
00:25 00:50 01:29 03:16 19:43
1.4x 2.0x 5.6x 10.1x 9.1x

insert 04:47 21:53 173:57 TO TO
02:05 05:04 62:45 581:57 TO
2.3x 4.3x 2.8x �1.0x

TSet find 01:39 06:17 93:17 260:56 TO
00:58 00:40 04:31 16:48 516:28
1.7x 9.4x 20.6x 15.5x �1.1x

insert TO TO TO TO TO
08:37 56:41 241:52 TO TO

>69.6x �>10.6x ���2.5x
remove 196:58 TO TO TO TO

13:03 92:29 TO
15.1x �6.5x

BH min 00:14 00:17 01:31 02:51 07:26
00:14 00:36 01:13 01:27 03:15
1.0x 0.4x 1.2x 2.0x 2.3x

decrKey 30:26 TO TO TO TO
04:35 13:48 20:51 81:05 236:42
6.6x >43.5x ��28.8x ���7.4x ����>2.5x

insert 37:30 218:13 TO TO TO
08:13 19:02 21:05 114:36 325:28
4.6x 11.4x >28.4x >>>5.2x ���1.8x

extrMin 36:52 TO 43:33 176:47 TO
07:01 26:19 01:46 04:05 01:50
5.2x >22.8x 24.6x 43.3x �>1058x

30

The table shows many cases where MUCHO-TACO suc-
ceeds in analyzing code for which TACO fails to produce a
final verdict within the ten-hour timeout.

Let us briefly focus on method TreeSet.insert(). Since
sequential analysis exceeds the ten-hour timeout for scope
10, we know that the speed-up achieved by MUCHO-TACO
exceeds 69.6x – yet we do not know by how much. If we
now proceed to scope 12, we can see that sequential analysis
(predictably) exceeds the ten-hour timeout again. However,
since analysis time usually grows exponentially as scope is
increased, it is reasonable to infer that it does so much more
blatantly. While we can only guarantee a speed-up of 10.6x,
an actual speed-up well over 100x is more likely. In cells
where the speed-up is most probably under-estimated, we
used a chain of ‘>’ symbols to denote that the actual value
is (most probably) substantially larger than reported. We
use as many ‘>’ as there were previous or equal scopes yield-
ing a TO in TACO. Notice, in particular, the use of ��� at
scope 15 for TreeSet.insert() (where scopes 10 through 15
yielded a TO). In contrast to the reported 2.5x, the actual
speed-up is probably several thousand times. To test this
hypothesis, we ran the experiment again on a more power-
ful workstation with the following characteristics: Intel(R)
Core(TM) i5-750 CPU running at 2.67GHz, 8 GB of RAM,
and Debian 6 OS. We set a new timeout at 200 hours, which
was reached before the analysis with TACO could produce a
result. This raises the speed-up that we can safely guarantee
to at least 50x.

In [12], TACO found a previously unknown bug in an im-
plementation of method BinHeap.extractMin() used in [29]
as part of a benchmark for Java Pathfinder. To expose
the bug, the input binomial heap must involve at least 13
nodes. The highlighted portion of Table 3 shows the speed-
ups obtained by using MUCHO-TACO: 20x in the case where
TACO can also find the bug, and�1058x for scope 20, where
TACO cannot find the bug within the ten-hour timeout while
MUCHO-TACO succeeds in less than two minutes.

In cases where sequential analysis can be completed very
efficiently, such as the SList class atop Table 3, MUCHO-
TACO does not produce significant speed-ups.

As we explained in Section 4.2, all parallel experiments
described so far were run on 16 quad-core PCs using one
master and 63 worker processes. In table 4 we report the
evolution of elapsed analysis times as the number of workers
is increased. We chose AVLTree.find() for this experiment
because its sequential analysis time using TACO was the
largest on Table 3 where scope 20 did not reach the ten-
hour timeout.

Table 4: Analysis time and speed-up for growing
number of workers. Method AVLTree.find(), scope
20.

Hardware 8x4 16x4 24x4 32x4 40x4
Workers 31 W 63 W 95 W 127 W 159 W
AVLTree.find 23:14 19:43 13:07 10:07 9:41
Speed-up 7.7x 9.1x 13.7x 17.78x 18.5x

4.4 Threats to Validity
We evaluated MUCHO-TACO on a benchmark consisting

of several container classes. Container classes have become
ubiquitous [23, 29], and are representative of a wider class

of programs that include, for instance, parse trees and XML
documents. Moreover, a number of analysis tools have used
these classes as benchmarks as well [23, 25, 5, 10, 17, 29].
Also, they are good examples of code in which strong heap
properties must be enforced. These classes consist of just a
few hundred lines of code each, e.g. ∼450 LOC for TreeSet,
∼270 LOC for BinHeap, etc. Yet the difficulty of analyzing
such classes does not reside in their size, but rather in the
complexity of their invariants.

We have strived to realistically estimate the benefits of
MUCHO-TACO over the sequential TACO tool, but covering
all dimensions with equal emphasis is not possible. One
might contest our interpretation of experimental results, for
instance, by pointing out that its emphasis on speed-up and
elapsed (wallclock) time disregards other important issues
like efficiency and total cumulated CPU usage, in terms of
which the same payoffs may look less impressive in some
cases. While this objection is a sensible one, we believe that
a typical potential user of a distributed BEA tool (having,
by definition, access to some quantity of idle hardware) will
pragmatically favor significant boosts in turnaround time
and maximum tractable problem size.

5. RELATED WORK
A small number of code analysis tools are available for

experimental comparison. In [12] we compared TACO with
JForge [10], Kiasan [9], Java PathFinder [28], ESC/Java2 [6],
Jahob [4] and Dafny [19]. Since MUCHO-TACO outperforms
TACO, it transitively outperforms these tools.

Even fewer tools are available allowing the parallel analy-
sis of Java programs. In [25], a parallel version of Symbolic
Java PathFinder was presented, which reports

. . .“a maximum analysis time speedup of 90x ob-
served using 128 workers, and a maximum test
generation speedup of 70x using 64 workers.”

In Table 3 we showed maximum speed-ups of 1058x for a
faulty method and 109.3x, for a correct one, using 63 work-
ers. These figures, as we explained in Section 4.3, are con-
servative estimations. Several of the case studies from [25]
are the same ones used in this article. Furthermore, while
[25] addresses the problem of test generation, we face the
more demanding one of bounded analysis, where the state
space to be traversed is generally larger.

Since TACO operates by reduction to the propositional
satisfiability problem, an alternative to MUCHO-TACO would
be the use of a distributed SAT-solver as a back-end to
TACO. Our attempts to explore this design were hindered
by the scarcity of real-world implementations.

CryptoMiniSat2 is an award-winning open source solver
with sequential and parallel operation modes. The author
also mentions distributed solving among its long-term goals.
No public release or other news about this have been an-
nounced. GrADSAT [7] reported experiments showing an
average 3.27x and a maximum 19.9x speed-up using various
numbers of workers ranging between 1 and 34. C-sat [20] is
a SAT-solver for clusters. It reports linear speed-ups, but
the tool is not available for experimentation.

PMSat [14], an MPI-based, cluster-oriented SAT-solver is
indeed available for experimentation, but reports generally
small speed-ups. It is based on a notion essentially equiv-
alent to that of guiding paths, a concept originally intro-
duced by PSATO [30]. SAT-solvers based on this approach

31

split the state space by choosing truth values for a number
of propositional variables. As explained in [30], if k vari-
ables are chosen, 2k subproblems may be produced. This is
not the case in MUCHO-TACO. If inside a MUCHO-TACO
bound for a field f we have f in Ni->M1 + Ni->M2 + ...

+ Ni->Mk eliminating nondeterminism for node Ni requires
splitting the bound into k smaller bounds. In the process,
the k variables corresponding to the pairs get their value set
to either true or false in each model. If we are eliminating
the nondeterminism from two distinct nodes Ni and Nj in the
domain at once, this produces at most as many problems as
the size of the Cartesian product Ran(Ni, f) × Ran(Nj, f),
which is polynomial on the number of propositional vari-
ables whose truth value is being set. The procedure can be
generalized to an arbitrary number of nodes. This is possi-
ble because fields are functional: in other words, we exploit
information from the problem domain to improve the anal-
ysis. MUCHO-TACO thus generates fewer subproblems than
SAT-solvers based on guiding paths.

If instead of the TACO translation we used one that, like
the one presented in [27], requires a logarithmic number of
variables to represent the codomain of a Java field, then the
number of subproblems generated by a parallel SAT-solver
based on guiding-paths would be comparable to the number
of subproblems generated by MUCHO-TACO. Unfortunately,
such a translation does not allow to refine bounds and is
incompatible with TACO and MUCHO-TACO.

JForge [10] is very close to TACO in its intentions. In [12]
we experimentally compared TACO with JForge, and showed
that the TACO technique produces a significant speed-up.
Since MUCHO-TACO outperforms TACO, it improves over
JForge as well. JForge is available for download, and its
authors have been very supportive.

Miniatur [3], like MUCHO-TACO, performs scope-bounded
analysis. Some of the examples reported are also treated in
this article with MUCHO-TACO. For instance, [3] also ana-
lyzes the TreeSet implementation, but does so using scope
4 for Object, 3 loop unrolls, and a simplified property where
only the size is checked to evolve correctly. A distinguishing
feature of Miniatur is its improved (with respect to the Alloy
Analyzer) handling of integers and arrays. Quoting [3],

“This allows us to represent integers in much
larger ranges than previously possible. Our tool
can handle 16-24 bit integers, a considerable im-
provement over previous approaches which han-
dled 4 bits.”

MUCHO-TACO can handle 32-bit integers, 64-bit longs and
IEEE-754-compliant floating point, thanks to its adoption
of the encoding used in FAJITA, our tool for test genera-
tion [1]. Since the case studies do not involve arithmetic,
we used Alloy integers. The translation from code to a re-
lational logic specification presented in [3] (which slices the
translated code according to the specification) could also be
used in the translation from MUCHO-TACO. Miniatur is not
available for experimentation, even for academic purposes.

Parallel analysis of code has also been attempted by split-
ting the program control flow graph and using JForge to
analyze each slice [22]. The experiments presented intersect
with ours. For example, singly linked lists and binary search
trees are considered, but for generally small scopes and fewer
loop unrolls. For method add in class SLList, the scope is
set to 8 (our benchmark starts with a minimum of 10), and

the maximum number of loop unrolls is 8, while we use 10.
Similar situations arise in the rest of the examples; notwith-
standing, analysis times with the parallel version are sub-
stantially larger than those achieved using MUCHO-TACO.
For instance, insertion on a binary search tree with scope 7
and 3 loop unrolls when the original problem is split into 4
subproblems, requires 76 seconds for the subproblem that is
solved more efficiently and 6409 seconds for the most de-
manding subproblem [22]. Analyzing the whole problem
using MUCHO-TACO requires 23 seconds. The technique
presented in [22] is compatible with MUCHO-TACO.

An approach to parallelizing scope-bounded analysis based
on data-flow analysis was presented in [21]. The technique
is compatible with MUCHO-TACO. The authors also include
collection implementations among their experiments. Method
contains from an implementation of singly linked lists is an-
alyzed, using a scope of 8 nodes and up to 8 loop unrolls.
Analyzing the same method with MUCHO-TACO using the
same scope and number of loop unrolls takes under one sec-
ond. Regarding method insert from class RBT (red-black
trees), and quoting the authors,

For the RBT.insert() method, VARDEF strat-
egy completes within 40 minutes for a scope of 4
and 4 unrolls while all other strategies run out of
memory.

This method is analyzed by MUCHO-TACO in under one
second. MUCHO-TACO can handle said method for scopes
up to 15 and 10 loop unrolls without running out of memory.

6. CONCLUSIONS AND FURTHER WORK
We presented a novel technique for parallel analysis of

sequential Java code. MUCHO-TACO, the analysis tool im-
plementing the technique, effectively improves code analyz-
ability by allowing TACO users with access to (even modest-
sized) PC clusters to harness aggregated computational re-
sources, enabling verification of most problem instances of
the kinds that TACO was designed to address at scopes hith-
erto considered untractable. We now look forward to eval-
uating MUCHO-TACO well beyond the TACO baseline, on
a broader benchmark including many other real-world Java
classes. In particular, due to the dramatic speed-ups typ-
ically obtained when a bug does exist, we are looking for-
ward to carrying out further experiments with faulty code.
Its success at finding bugs also suggests that MUCHO-TACO
could be useful as a component within an efficient tool for
parallel generation of test inputs.

Some additional optimizations should be considered. For
example, it is possible to remove even more propositional
variables by using data-flow analysis to prune not just vari-
ables from the initial state, but also those from intermediate
states of the program under analysis [8].

7. ACKNOWLEDGEMENTS
This publication was made possible by grant NPRP-4-

1109-1-174 from the Qatar National Research Fund (a mem-
ber of Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

8. REFERENCES
[1] Abad P., Aguirre N., Bengolea V., Ciolek D., Frias

M.F., Galeotti J., Maibaum T., Moscato M., Rosner

32

N., Vissani I., Tight Bounds + Incremental SAT =
Better Test Generation under Rich Contracts, to
appear in Proceedings of ICST 2013.

[2] Belt, J., Robby and Deng X., Sireum/Topi LDP: A
Lightweight Semi-Decision Procedure for Optimizing
Symbolic Execution-based Analyses, FSE 2009,
pp. 355–364.

[3] Dolby J., Vaziri M., Tip F., Finding Bugs Efficiently
with a SAT Solver, in ESEC/FSE’07, pp. 195–204,
ACM Press, 2007.

[4] Bouillaguet Ch., Kuncak V., Wies T., Zee K., Rinard
M.C., Using First-Order Theorem Provers in the
Jahob Data Structure Verification System. VMCAI
2007, pp. 74–88.

[5] Chandrasekhar Boyapati, Sarfraz Khurshid, Darko
Marinov: Korat: automated testing based on Java
predicates. ISSTA 2002: 123-133.

[6] Chalin P., Kiniry J.R., Leavens G.T., Poll E. Beyond
Assertions: Advanced Specification and Verification
with JML and ESC/Java2. FMCO 2005: 342-363.

[7] Wahid Chrabakh and Rich Wolski, GrADSAT: A
Parallel SAT Solver for the Grid, in UCSB Computer
Science Technical Report Number 2003-05.

[8] Cuervo-Parrino B., Galeotti J.P., Garbervetsky D.,
Frias M.F., A dataflow analysis to improve SAT-based
program verification, to appear in Proceedings of
SEFM 2011.

[9] Deng, X., Robby, Hatcliff, J., Towards A
Case-Optimal Symbolic Execution Algorithm for
Analyzing Strong Properties of Object-Oriented
Programs, in SEFM 2007, pp. 273-282.

[10] Dennis, G., Chang, F., Jackson, D., Modular
Verification of Code with SAT. in ISSTA’06,
pp. 109–120, 2006.

[11] Flanagan, C., Leino, R., Lillibridge, M., Nelson, G.,
Saxe, J., Stata, R., Extended static checking for Java,
In PLDI 2002, pp. 234–245.

[12] Juan P. Galeotti, Nicolás Rosner, Carlos López
Pombo, Marcelo F. Frias: Analysis of invariants for
efficient bounded verification. ISSTA 2010: 25–36.

[13] Juan P. Galeotti, Nicolás Rosner, Carlos López
Pombo, Marcelo F. Frias: TACO: Efficient SAT-Based
Bounded Verification Using Symmetry Breaking and
Tight Bounds, submitted to IEEE TSE, 2013.

[14] Lúıs Gil, Paulo Flores and Lúıs Miguel Silveira:
PMSat: a parallel version of MiniSAT, Journal on
Satisfiability, Boolean Modeling and Computation 6
(2008) 71-98.

[15] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter.
Alcoa: the alloy constraint analyzer. In Proceedings of
International Conference on Software Engineering,
Limerick, Ireland, 2000.

[16] Jackson, D., Software Abstractions. MIT Press, 2006.

[17] Jackson, D., Vaziri, M., Finding bugs with a constraint
solver, in ISSTA’00, pp. 14-25, 2000.

[18] Khurshid S. and Marinov D., TestEra:
Specification-Based Testing of Java Programs Using
SAT., Automated Software Engineering 11(4):
403–434 (2004)

[19] Leino K.R.M., Specification and verification of
Object-Oriented Software, Lecture Notes from
Marktoberdorf International Summer School 2008.

[20] Kei Ohmura and Kazunori Ueda, c-sat: A Parallel
SAT Solver for Clusters, in SAT 2009, LNCS 5585,
2009.

[21] Danhua Shao, Divya Gopinath, Sarfraz Khurshid,
Dewayne E. Perry, Optimizing Incremental
Scope-Bounded Checking with Data-Flow Analysis.
ISSRE 2010: 408–417.

[22] Danhua Shao, Sarfraz Khurshid, Dewayne E. Perry:
An Incremental Approach to Scope-Bounded Checking
Using a Lightweight Formal Method. FM 2009:
757–772.

[23] Rohan Sharma, Milos Gligoric, Andrea Arcuri,
Gordon Fraser, Darko Marinov: Testing Container
Classes: Random or Systematic? FASE 2011: 262-277.

[24] Siddiqui J.H., and Khurshid S., PKorat: Parallel
Generation of Structurally Complex Test Inputs, in
Proceedings of ICST’09.

[25] Matt Staats, Corina S. Pasareanu: Parallel symbolic
execution for structural test generation. ISSTA 2010:
183-194

[26] Torlak E., Jackson, D., Kodkod: A Relational Model
Finder. in TACAS ’07, LNCS 4425, pp. 632–647.

[27] Vaziri, M., Jackson, D., Checking Properties of
Heap-Manipulating Procedures with a Constraint
Solver, in TACAS 2003, pp. 505-520.

[28] Visser W., Havelund K., Brat G., Park S. and Lerda
F., Model Checking Programs, ASE Journal, Vol.10,
N.2, 2003.

[29] Visser W., Păsăreanu C. S., Pelánek R., Test Input
Generation for Java Containers using State Matching,
in ISSTA 2006, pp. 37–48, 2006.

[30] Hantao Zhang, Maria Paola Bonacina, and Jieh
Hsiang. 1996. PSATO: a distributed propositional
prover and its application to quasigroup problems. J.
Symb. Comput. 21, 4-6 (June 1996).

[31] http://www.mfrias.com.ar/

[32] http://cecar.fcen.uba.ar/

33

